
Information and Software Technology 149 (2022) 106936

A
0

A
f
D
P

A

K
C
T
G
V

1

(
s
c
v
t

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

search-based framework for automatic generation of testing environments
or cyber–physical systems
mytro Humeniuk ∗, Foutse Khomh, Giuliano Antoniol
olytechnique Montréal, 2500 Chemin de Polytechnique, QC H3T 1J4, Montréal, Canada

R T I C L E I N F O

eywords:
yber–physical systems
est scenario generation
enetic algorithms
irtual environments

A B S T R A C T

Background: Many modern cyber–physical systems incorporate computer vision technologies, complex sensors
and advanced control software, allowing them to interact with the environment autonomously. Examples
include drone swarms, self-driving vehicles, autonomous robots, etc. Testing such systems poses numerous
challenges: not only should the system inputs be varied, but also the surrounding environment should be
accounted for. A number of tools have been developed to test the system model for the possible inputs falsifying
its requirements. However, they are not directly applicable to autonomous cyber–physical systems, as the inputs
to their models are generated while operating in a virtual environment.
Aims: In this paper, we aim to design a search-based framework, named AmbieGen, for generating diverse
fault-revealing test scenarios for autonomous cyber–physical systems. The scenarios represent an environment
in which an autonomous agent operates. The framework should be applicable to generating different types of
environments.
Methods: To generate the test scenarios, we leverage the NSGA-II algorithm with two objectives. The first
objective evaluates the deviation of the observed system’s behaviour from its expected behaviour. The second
objective is the test case diversity, calculated as a Jaccard distance with a reference test case. To guide the
first objective we are using a simplified system model rather than the full model. The full model is used to run
the system in the simulation environment and can take substantial time to execute (several minutes for one
scenario). The simplified system model is derived from the full model and can be used to get an approximation
of the results obtained from the full model without running the simulation.
Results: We evaluate AmbieGen on three scenario generation case studies, namely a smart-thermostat, a robot
obstacle avoidance system, and a vehicle lane-keeping assist system. For all the case studies, our approach
outperforms the available baselines in fault revealing and several other metrics such as the diversity of the
revealed faults and the proportion of valid test scenarios.
Conclusion: AmbieGen could find scenarios, revealing failures for all the three autonomous agents considered
in our case studies. We compared three configurations of AmbieGen: based on a single objective genetic
algorithm, multi-objective, and random search. Both single and multi objective configurations outperform
the random search. Multi objective configuration can find the individuals of the same quality as the single
objective, producing more unique test scenarios in the same time budget. Our framework can be used to
generate virtual environments of different types and complexity and reveal the system’s faults early in the
design stage.
. Introduction

One of the rapidly developing families of cyber–physical systems
CPS) are autonomous and vision based CPS. Examples include drone
warms, self driving cars, cave or underwater exploring robots. Typi-
ally, in the CPS development process the systems are validated and
erified according to the V-model approach [1]. Prior to running the
ests on a real system, the V-model includes model-in-the-loop and

∗ Corresponding author.
E-mail address: dmytro.humeniuk@polymtl.ca (D. Humeniuk).

software-in-the-loop testing stages. In these stages the simulations of
the system are run in a virtual environment. The goal is to model the
real environment effect on CPS(s) and generate test scenarios violating
some critical properties of CPS. However, during these simulations,
engineers often lack tool support for generating the scenarios [2]. For
particular applications there exist content generation techniques, like a
Kruskal’s algorithm for maze generation [3] or pre-configured scenar-
ios, like the virtual worlds used in computer games [4]. However, they
do not always provide the needed scenario complexity and oftentimes
vailable online 5 May 2022
950-5849/© 2022 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2022.106936
eceived 15 July 2021; Received in revised form 20 April 2022; Accepted 25 April
 2022

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:dmytro.humeniuk@polymtl.ca
https://doi.org/10.1016/j.infsof.2022.106936
https://doi.org/10.1016/j.infsof.2022.106936
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.106936&domain=pdf

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.

c
t

the scenarios have to be designed manually. Consider an autonomous
robotic system, that should navigate to a goal destination in an envi-
ronment with obstacles. The robots interact with the physical world via
sensors and actuators in a feedback loop, avoiding the obstacles and
searching the goal destination. Test scenario for such system includes
virtual environment with obstacles, including moving and unexpected
obstacles, changing terrain structure and environmental conditions.
Manually designing all the possible scenarios in the virtual environment
is a tedious task.

In this paper, we propose a search based approach, further referred
to as ‘‘AmbieGen‘‘ to automatically generate test scenarios for cyber–
physical systems. In the literature, typically one objective, accounting
for the scenario fault revealing power [5], or two objectives, accounting
for fault revealing power and diversity [6], are used. To evaluate the
contribution of adding the first and the second objectives we consider
three configurations of AmbieGen: based on random search, single-
objective genetic algorithm (AmbieGen SO) and multi-objective genetic
algorithm NSGA-II (AmnbieGen MO). Preliminary results confirm that
using the two objectives, maximizing both: scenario fault revealing
power and diversity, allows to find more unique fault revealing sce-
narios given the same time budget. To calculate the first objective we
are using the simplified system model, derived from the full model of
the system, as suggested by Menghi et al. [7]. The full model is used
to execute the scenarios in the simulation environment and is usually
computationally expensive. The simplified model allows to reduce the
computational and time cost needed to produce the test scenarios as it
does not require the simulator to run and provides the approximated
outputs of the full model in a reduced amount of time.

We evaluate our approach on three test generation case studies.
In the first case study, a smart-thermostat agent should follow the
schedule with the expected precision. The goal of the testing approach
is to generate the temperature schedule and a combination of envi-
ronmental conditions violating the requirement. In the second case
study, an autonomous robot should navigate to a goal location in an
indoor environment with obstacles, without bumping into them. A
test scenario should find such an indoor environment that makes the
robot violate the requirements. In the third, an autonomous vehicle,
with a lane-keeping assist system (LKAS), should follow a road lane
of the given trajectory, without going out of its bounds. The testing
approach should generate a virtual road that forces the car to go out
of the road. AmbieGen could reveal on average 9 failures in two
hours for the autonomous robot model and 14 failures in two hours for
the self-driving car model executed in the simulators. Given the same
evaluation budget, in all the case studies the multi-objective and single-
objective configurations of AmbieGen produced fitter solutions with a
large effect size, comparing to the random search. Multi-objective con-
figuration allowed to produce more diverse scenarios with medium to
large effect size comparing to single-objective, while finding solutions
of the same or similar quality.

This paper makes the following contributions:

1. We design a search-based framework for generating customized
environments for testing autonomous CPS.

2. We propose a novel technique for generating the virtual roads
and robot navigation maps.

3. Finally, we provide the code for replication of all of our experi-
ments [8].

Researchers and practitioners can leverage AmbieGen to automati-
ally generate scenarios for autonomous CPS that will be further passed
o the simulators to run tests on the full CPS models.
The remainder of this paper is organized as follows. Section 2

discusses the related works in the domain of CPS testing. In Section 3
we formalize the problem of scenario generation and provide the
description of AmbieGen approach in Section 4. Section 5 describes the
test generation case studies used to evaluate our approach. In Section 6
2

we formulate the research questions and our evaluation methodology.
The same section reports our results and answers to research questions.
Section 7 discusses the results and the main challenges of this study. In
Section 8 we explain the threats to the validity of our results. Section 9
concludes the paper and discusses some avenues for future works.

2. Related literature

Typically, the cyber–physical systems are developed using a model-
based design approach [1]: after establishing the requirements of the
system, model-in-the-loop testing is performed. In this step, models
of the hardware part and the controller are created and tested in the
simulation environment. One of the limitations of simulation platforms
is that they do not provide clear guidance to engineers as to which
test scenarios should be selected for simulation. Therefore, a number
of approaches have been developed to generate the testing scenarios.

General approaches for CPS testing. In the classical approach, the
exhaustive exploration of the state-space of the model is performed [9].
It uses the abstract model, created strictly according to the system
requirements, to generate the test cases for the model of the system
under test (SUT). If the outputs of the SUT model and abstract model
are different, the fault in the SUT is revealed. As the system models
get more complex, the search space becomes infeasible. More recently,
falsification based approaches have been proposed, verifying whether
the model meets specific requirements specified in a temporal logic
notation such as timed computation tree logic (TCTL), linear temporal
logic (LTL), metric temporal logic (MTL) or signal temporal logic (STL)
. The UPAAl SMC tool performs the statistical model checking (SMC)
of a given model, with the requirements specified using TCTL notation
[10]. The core idea of SMC is to monitor some simulations of the
system, and then compute the probability along with confidence inter-
vals that a specific requirement holds for the SUT. A number of tools
were developed that instead of calculating the probability that a system
satisfies the property with a certain confidence, compute the worst
expected system behaviour as a quantitative value, called robustness.
Examples of such tools are S-Taliro [11], Breach [12] and ARIsTEO [7].
Differently from others, ARIsTEO propose to apply falsification testing
to the surrogate, i.e., approximated model of the SUT, that closely
mimics its behaviour but is significantly cheaper to execute. Arrieta
et al. proposed a search based approach, that does not use the system
model [13]. They defined three cost effectiveness measures to guide
search towards generating optimal test cases: requirements coverage,
test case similarity (effectiveness) and test execution time (cost).

In the described works, authors consider falsification of the model
of the system that takes as an input a set of signals 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑚}
and produces a set of signals 𝑌 = {𝑦1, 𝑦2,… , 𝑦𝑛} as the output. In our
work we focus on testing autonomous systems, for which the input
signals are rather complex and might represent sensors and camera
data, coming from different sources. Imagine a self-driving vehicle,
using the lidar sensors and RGB camera to perceive the environment.
Directly generating a valid combination of falsifying input signals (rep-
resented by lidar readings and RGB camera readings) would be rather
challenging. Therefore, we focus on generating test cases that specify a
virtual environment for an autonomous system, rather than the input
signals. The input signals are generated in the virtual environment
during the simulation, based on the actions taken by the autonomous
agent. A number of approaches have been proposed for generating
virtual environments for testing the autonomous driving and robotic
systems.

Vehicular driving system testing. Abdessalem et al. in [2] use a
multi-objective search evolutionary algorithm NSGA-II to obtain test
scenarios for Automated Emergency Braking (AEB) system. They rep-
resent the test case as a tuple with sets of static parameters, such as
precipitation, fogginess, road shape and visibility range, as well as
dynamic parameters, such as initial vehicle speed, initial pedestrians
speed and location. The disadvantage of such encoding is the limitation

in describing the static parameters. Such encoding does not allow to

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.

o
c
s
e
e
i
a
r

p
o
t
G
t
d
t
a

specify, for example, a complex road topology, with a number of turns
and intersections. Also, we cannot account for the cases, where the
static parameters need to be changed during the test case. For example,
when the road material changes along the route, i.e., asphalt surface
changes to pavement. In order to generate challenging test cases, they
use fitness functions minimizing the distance to the pedestrian and time
to collision, calculated while executing the test case. To mitigate the
computation cost of executing physics-based simulations, the simplified
models of ADAS trained on neural networks (NN) are used. Evidently,
the NN has to be retrained each time model parameters are changed.

AsFault tool was proposed to generate the road configuration to test
car Lane Keeping Assist System (LKAS) by Gambi et al. [5]. This system
should allow an autonomous car to always drive inside its lane. The
test cases in this work correspond to a road topology that a car needs
to follow. AsFault represents roads as set of polylines, i.e., discrete
sequences of points. One polyline corresponds to one road segment.
Roads are generated procedurally by stitching one road segment to
the next one. To evolve the roads, authors use a customized mutation
operator, that randomly replaces a road segment and crossover operator
that splits two roads at a random point and recombines them, or
recombines random subsets of two roads. With such encoding combin-
ing the road polylines to produce a valid road may be challenging.
Authors mention that if the search operator produces invalid road
topology, AsFault retries the application of the same search operator
with a probability of giving up which increases per failed attempt.
Therefore, one disadvantage of such encoding is the difficulty in ap-
plying crossover and mutation operators. Another disadvantage is the
limitations in encoding some important details of the test case such
as the other vehicles, obstacles or pedestrian locations. Authors do
not mention the possibility to encode such information with AsFault.
Finally, the selected fitness function maximizes the distance of ego-car
from the centre of the road lane. The real simulation model is used for
calculating the fitness function value, which increases the computation
cost. To improve the efficiency of the tool, authors filter out similar
test cases by calculating Jaccard index between them. However, they
do not maximize the diversity of the test cases explicitly.

Riccio and Tonella [14] propose DeepJanus, a tool to explore the
behavioural space of a deep learning (DL) system to find pairs of inputs
at its frontier: one input on which the DL system behaves as expected,
and another similar input on which it misbehaves. In this work they
consider two case studies: image classification (from MNIST database)
and steering angle prediction for a vehicle LKAS system. We will further
focus on the later. The scenario for the vehicle is represented as a
road topology and it is encoded as a list of coordinates of the control
points. These control points are further interpolated with Catmull–Rom
cubic splines to produce a road topology. This encoding is limited in
terms of increasing the complexity of the test case, such as specifying
the location of other vehicles, obstacles or intersections. The tool is
leveraging a two objective NSGA-II algorithm to generate effective test
cases. Each individual of the algorithm is encoded as a pair of road
topologies. The first objective, 𝑓1, aims to promote diversity between an
individual and existing individuals as well as minimize the difference
between the pair of road topologies constituting the individual. Authors
define a problem specific distance metric used to evaluate the 𝑓1. For
the LKAS case study it is calculated as the Levenshtein distance between
the roads. For image classification, it is calculated as an Euclidean
distance between pixel matrices. The second fitness function, 𝑓2, aims
to minimize the distance of an individual to the behavioural frontier.
In the case of the LKAS system case study it is calculated based on the
maximum deviation from the lane centre. If this deviation is higher
than a certain threshold for one of the roads of the individual, the 𝑓2 is
assigned a −1 value, otherwise it is equal to the absolute value of the
maximal deviation. We can see that the fitness functions are designed to
evaluate a pair of road topologies, rather than a single road topology.

Autonomous robot testing approaches. Arnold et al. [15] de-
3

signed a tool to produce navigation maps to test autonomous robot b
control algorithms. They use the Perlin noise to randomly generate
the maps and then select the ones, that correspond to a defined set of
unwanted behaviours, such as stalling or colliding with a wall. No opti-
mization algorithms are used to increase the number of fault-revealing
scenarios.

Sotiropoulos et al. [16] generate navigation maps of different dif-
ficulty level by changing the number and position of obstacles on the
map. As in the previous work, the procedural content generation with
fixed parameters is used without optimization.

Nguyen et al. [17] propose a genetic algorithm based approach to
design test scenarios for a cleaner robot. The robot goal is to collect
all the rubbish given a specific amount of time, without bumping into
obstacles. The scenario represents an area with obstacles and objects
to collect. It is encoded as a table with R x R cells. A cell containing
an object is denoted by 1, while a content-free cell is denoted by 0.
The limitation of such encoding is that it is problem specific, i.e., it is
suitable for encoding a map for the robot, however it is rather difficult
to represent a road topology using such encoding. The fitness function
is defined as closest distance to obstacles observed by the robot.

Considering the existing approaches for environment generation,
we can see that their implementation, including the evolutionary algo-
rithm representation, has such limitations as problem specific or hardly
customizable individual representation, difficulties in search operator
implementation. In our work we propose a test generation approach,
AmbieGen, with encoding that can be applied to test generation tasks
for different autonomous agents, can provide a customizable scenario
complexity level and allows to easily implement the search operators.
Furthermore, in our approach we are using two objectives, accounting
for both fault revealing power 𝐹1 and diversity of the test cases 𝐹2.
Implementation of 𝐹1 is problem specific and is defined as the dif-
ference between the expected and observed behaviour of the agent.
Contrary to existing works, we are explicitly promoting the diversity
of the test cases as the second objective 𝐹2 of the genetic algorithm
using a universal distance metric, explained in Section 3.2. In our
experiments we show that adding the 𝐹2 allows to increase the diversity
of the test cases in the resulting test suite, without reducing their
fault revealing power. Overall, we surmise that our framework can
be leveraged for implementing search based algorithms for test case
generation for autonomous systems.

3. Problem formulation

A cyber–physical system is a reactive system, consisting of a com-
puting device (or a collection of them) interacting with the environ-
ment via inputs and outputs [18]. In a simulator, the autonomous CPS
agent observes the virtual environment at discrete timestamps 𝑡𝑖 using
its local sensors, e.g., temperature, lidar sensors or RGBD-cameras, and
measures its internal state 𝑠𝑡. At each timestep 𝑡𝑖 it receives a new
bservation 𝑜𝑡 ∈ 𝑂 and selects an action 𝑎𝑡 ∈ 𝐴 according to its
ontrol policy 𝜋(𝑠𝑡, 𝑜𝑡). Here 𝐴 is a set of possible actions and 𝑂 is a
et of all possible observations (the observation space), defined by the
nvironment where the agent operates. Each test case represents an
nvironment for the agent as well as the mission it needs to accomplish
n it. We can formulate the problem as finding a test case, forcing the
gent to take such actions 𝑎𝑡 that lead to violation of the established
equirements and failure of the mission.

For example, to test a self-driving vehicle we should consider such
arameters as the road type and size, the location of other vehicles
r pedestrians, the driving weather conditions, etc. Evidently, one of
he most important requirements would be the collision avoidance.
enerating such scenarios manually is an extremely time consuming

ask: the engineers would need to list the precise positions and heading
irections of the moving objects, specify different types of environmen-
al conditions, etc. Therefore it is preferable to generate such scenarios
utomatically. To control their quality, optimization techniques should

e used.

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.

e
c

a

s
i
s
a
o
e
a

t
p
L
i
i
b
t

l

s
e
k
l
t
a

t
t

𝐹

Table 1
Scenario 𝑇𝐶 representation.

𝐸1 𝐸2 𝐸3 ... 𝐸𝑚

𝐴1 𝐴1𝑒1 𝐴1𝑒2 𝐴1𝑒3 ... 𝐴1𝑒𝑚
𝐴2 𝐴2𝑒1 𝐴2𝑒2 𝐴2𝑒3 ... 𝐴2𝑒𝑚
...
𝐴𝑛 𝐴𝑛𝑒1 𝐴𝑛𝑒2 𝐴𝑛𝑒3 ... 𝐴𝑛𝑒𝑚

3.1. Scenario representation

In this subsection we formalize the definition of the test scenarios.
As it was mentioned earlier, one test case represents an environment in
which the agent operates as well as the mission it needs to accomplish.
We encode the test case as a set of parameters, needed to generate the
defined environment in the simulator.

First, we propose to divide the test case into at most 𝑚 parts. Each
part can represent some aspect of the mission to accomplish or a part
of the virtual environment in which the agent operates. We call these
parts the environmental elements 𝐸𝑖. We describe each environmental
element with 𝑛 parameters, which we further refer to as attributes.

As an example, let us consider a car lane keeping assist system
(LKAS). Its main goal is to keep the vehicle within the road lane. One
of the possible test cases to test this system can be a road topology,
that the vehicle needs to follow. To design the test case, we suggest
representing the road topology as a combination of road segments
of different length and curvature. Here, each road segment would
correspond to one environmental element and its parameters such as
length and curvature — to the attributes of the environmental element.

Each individual (test case TC) is represented as a 𝑛𝑥𝑚 matrix where
the cell (𝑖, 𝑗) contains values defining the TC. In a nutshell, a TC has 𝑛
attributes 𝐴𝑖, and is composed of at most 𝑚 elements. More precisely,
cell (𝑖, 𝑗), alias 𝐸𝑗 (in line 𝐴𝑖), is the value sampled from the attribute
𝐴𝑖. Without loss of generality, an attribute 𝐴𝑖, takes value into a set
of possible realizations {𝑎0, 𝑎1,… , 𝑎𝑛} or is defined as a closed interval
[𝐴𝑖𝑚𝑖𝑛, 𝐴𝑖𝑚𝑎𝑥]. We allow for the cells to be empty, if needed.

Turning to the LKAS example, we can describe each road segment,
i.e., environmental element, with such parameters as the length, the
turning angle, the slope, the road material, etc. Each road segment will
have a value for each of these parameters. By providing combinations
of road segments with different parameter values, we generate various
road topologies.

Finally, the test scenarios can have restrictions 𝑅, which limit the
scenario length 𝑀 or particular combinations of attributes. In the LKAS
xample, for instance, we can limit the total road length or a certain
ombination of road segments, that create too sharp turns, etc.

We provide examples of application of this representation to gener-
te different test scenarios for autonomous agents in Section 5.

Having obtained the matrix with attributes, i.e., the test scenario
pecification, we can generate the corresponding virtual environment
n the simulator. According to the selected timestamp in the simulator
ettings, the agent will receive the inputs in the form of observations
t each timestamp. Observations can be represented by a temperature
r lidar sensor readings, images from the RGB camera. After receiving
ach observation, the agent performs an action. Depending on the
ctions the agent takes it can fail or pass the test case.

In the LKAS example, suppose the car uses its RGB camera images
o define its steering wheel angle. The standard camera frame rate to
rovide stable image for such applications is more than 30 Hz [19].
et us consider 30 Hz for this example. This means the car receives an
nput in the form of the RGB image every 33.3 ms. For each received
nput, it provides a value of the steering angle to use. This value can
e obtained, for instance, by querying a neural network based model
hat classifies steering angle values based on the image of the road.

Initial encoding of the scenario is the matrix 𝑇𝐶, containing a high-
evel description of the environment. With such representation it is easy
4

to implement the evolutionary search operators by simply swapping
the matrix columns between each other and randomly changing the cell
values. By swapping the columns, we imply reassigning the attributes
from one environmental element to another. To evaluate its fitness it
first needs to be converted to the environment configuration for the
approximated model (‘‘TC to environment’’ module). For example, the
scenarios for an autonomous robot should be converted to a list of
obstacle coordinates in a map. Then an approximated model is used to
execute the scenarios and the fitness function is calculated based on the
execution results (‘‘Fitness function’’ module). Approximated model can
be created either from real data or from the full model data. Another
possibility is to use a simplified system model, based on already
implemented robotics algorithms, such as those available at python
robotics project [20]. Overall, to customize AmbieGen, the developer
needs to provide a list of attributes and their allowable ranges, an
implementation of the ‘‘TC to environment’’ and ‘‘Fitness function’’
modules. The AmbieGen will integrate the modules and implement
the initial population generation, crossover and mutation operators.
Moreover, it is simple to control the level of complexity needed for
the environment. By adding more attributes, the complexity can be
increased. The limitation is the possibility of the simulator to interpret
more complex environment configurations, such as the terrain type, the
weather conditions, etc.

3.2. Search objectives definition

The main goal is to find scenarios producing system faults. At the
same time, the scenarios should be diverse, uncovering different types
of faults. From our experience, using only one objective results in
producing many similar test cases in the last generation. Therefore
we suggest adopting a multi-objective algorithm, where one of the
objectives is accounting for the diversity of the test cases. The idea of
adding a second objective for diversity is not new and was addressed
in the novelty search works, such as [21], and test scenario generation
tools [6].

To estimate the first objective 𝐹1, the fault revealing power 𝜑 of
the test case, we compute the deviation between the expected 𝐵(𝑇𝐶)
and observed system behaviour 𝐵𝑜(𝑇𝐶) after executing the test case:

𝐹1 = 𝜑(𝑇𝐶) = 𝛿(𝐵(𝑇𝐶), 𝐵𝑜(𝑇𝐶)), (1)

where 𝛿 is a function for computing the deviation between the expected
and observed system behaviour and 𝑇𝐶 is the test scenario specifi-
cation. The function 𝛿 can defined by the developer, according to
his domain knowledge, or taken from the literature. The expected
behaviour 𝐵(𝑇𝐶) is typically defined in the system requirements or
formulated by the developers e.g., ‘‘the car should not deviate from
the lane centre for more than 1 m’’. The observed behaviour corre-
sponds to the model under test (MUT) outputs after scenario execution.
However, the models of autonomous systems are rather complex and
take long time to execute in the simulators, i.e., up to several min-
utes for one scenario. Moreover, executing the full models in the
simulation environments requires additional system resources such as
a GPU and high amount of RAM. Therefore we suggest estimating
the observed behaviour 𝐵𝑜(𝑇𝐶) using the approximated (surrogate)
ystem models. Such models can be built based on the grey-box mod-
lling approach [22], where model structure is chosen from system
nowledge and parameters are selected to match sampled data. When
ittle knowledge is available about the model, system identification
echniques [23] can be used, where the modelled system is considered
s a black box.

To estimate the second fitness function 𝐹2, the variability 𝜐 of the
est case, we compute the Jaccard distance between it and a reference
est case:

2 = 𝜐(𝑇𝐶, 𝑇𝐶𝑟𝑒𝑓) = 1 −
𝑇𝐶 ∩ 𝑇𝐶𝑟𝑒𝑓 , (2)

𝑇𝐶 ∪ 𝑇𝐶𝑟𝑒𝑓

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.
where 𝑇𝐶 ∪ 𝑇𝐶𝑟𝑒𝑓 to the total number of environmental elements in
both test cases and 𝑇𝐶 ∩ 𝑇𝐶𝑟𝑒𝑓 to the number of inputs with similar
or same attributes.

Finally, we define our search objectives:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∶ 𝜑(𝑇𝐶),

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∶ 𝜐(𝑇𝐶, 𝑇𝐶𝑟𝑒𝑓),

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝐶1(𝑇𝐶) = 𝜑(𝑇𝐶) − 𝛼 > 0,

Where 𝐶1 is a constraint for the minimum value of the first objective,
𝛼 is the developer defined threshold to identify the test cases as having
a risk of producing a failure. This constraint is introduced to avoid
producing test cases with low fault revealing power.

In our study we consider two configurations of our approach: Am-
bieGen MO, described above and AmbieGen SO based on a single
objective genetic algorithm (GA) with 𝐹1 as a fitness function.

4. Proposed approach description

To perform the search we are using evolutionary search algorithms
NSGA-II and GA [24], which have proven to be effective at similar
tasks [13,25]. Below, we present the GA and NSGA-II configurations
used in AmbieGen.

We implemented the AmbieGen MO and AmbieGen SO using a
python Pymoo framework [26]. The framework provides the possibil-
ity to define custom solution representations, crossover and mutation
operators.

Solution representation. Each individual in the population corre-
sponds to a test case. Individuals can have a variable number of genes,
i.e., environment elements depending on the application. Internally,
we represent the individual, i.e., the test case, shown in Table 1, as
a dictionary, as shown below:

{ " E1 " : { "A0 : " A0 , "A1" : A1 , . . . ,
"An" : An } , " Ei " : { . . . } } ,

where 𝐸𝑖, corresponds to the element of the environment that is de-
scribed and 𝐴𝑛 to the value of the attribute from the defined attribute
set 𝐴.

Initial test case generation. The search begins by generating the
initial test cases. One of the options is to assign arbitrary values to
environmental attributes 𝐴0, . . . , 𝐴𝑛 of each element 𝐸𝑖 from their
allowable value ranges [𝐴𝑖𝑚𝑖𝑛, 𝐴𝑖𝑚𝑎𝑥] or realization sets {𝑎0, 𝑎1,… , 𝑎𝑛}.
When some distribution of attribute values is known to produce better
test cases, from both semantical and fault-revealing point of view,
we suggest using the Markov chain to assign the values of certain
attributes. For example, when generating the road segments, the road
consisting of only the straight segments is very unlikely to produce
faults. Such cases can be avoided by assigning values with the Markov
chain. To build a Markov chain we need to define the state space as
well as the probability table of switching between these states. As the
state space we can use the possible values of one of the attributes. In the
case of the LKAS it can be the three road segment types: going straight,
turning left and turning right. The state switching probability table can
be inferred from the domain knowledge. In the case of the LKAS system,
we want to lower the probability of getting a sequence of only straight
road segments. An example of a Markov chain used to generate the
initial test cases for the LKAS is shown in Fig. 1.

Fitness evaluation. We use two fitness functions to evaluate each
individual: 𝐹1, corresponding to the function in (1) and 𝐹2 correspond-
ing to (2). 𝐹1 is calculated after executing the test case with a surrogate
model 𝑀 of the system. This function is problem specific and should be
proportional to the unwanted behaviour of the system. For example, for
evaluation of a self-driving car test case we can compute the maximum
deviation from the road lane centre, where bigger deviation is likely to
5

produce more faults.
Fig. 1. Markov chain used to generate the initial test cases for the LKAS case study.

Fig. 2. Crossover operator for two test cases with 5 and 6 environmental elements
with the crossover point at the third element.

In our implementation we compute 𝐹2 as the Jaccard distance
between the individual and its parent, which acts as a reference test
scenario. The intuition is to promote the modifications done to the test
scenarios. However, a different reference test scenario can be used, such
as the closest individual from the Pareto optimal solutions.

As the Pymoo framework minimizes the fitness functions, in our
implementation we multiply 𝐹1 and 𝐹2 actual values by (−1).

Mating selection. To select the individuals for crossover and mu-
tation the binary tournament selection is used, which is implemented
by default in Pymoo. 𝑁 individuals are selected, producing 𝑁 new
individuals after crossover and mutations.

Crossover operator. We are using a one point crossover opera-
tor, which is one of the commonly used operators for variable-length
solution representation. This operator creates two new test cases by
exchanging information between two existing test cases 𝑇𝐶1 (parent
1) and 𝑇𝐶2 (parent 2), with corresponding lengths of 𝑚1 and 𝑚2. Let
us suppose that 𝑚1 is smaller than 𝑚2. It is performed in two steps.
First we randomly select the crossover point 𝑘 with the index from 1 to
𝑚1−1. Then the elements of the 𝑇𝐶1 with the indices from 𝑘 to 𝑚1 and
elements of 𝑇𝐶2 with indices from 𝑘 to 𝑚2 are swapped. An illustration
of the crossover operation between two individuals is shown in Fig. 2.
Individual 𝑇𝐶1 length is 4 elements and individual 𝑇𝐶2 a size of 3. Both
individuals have two types of attributes 𝐴1 and 𝐴2. 𝐴𝑖𝑒𝑗 is a value of
the attribute 𝐴𝑖 corresponding to the environmental element 𝐸𝑗 . The
crossover point is chosen to be 2 and is shown as a red line.

Mutation operators. We define three mutation operators:

• exchange operator : the attributes of two randomly selected
environmental elements of a chromosome are exchanged the
positions;

• change of variable operator : an environmental element 𝐸𝑖 in a
chromosome is randomly selected, then for one of the attributes
𝐴𝑛 the value is changed according to its type and maximum as
well as minimum values.

• scramble operator : attributes of a number of environmental ele-
ments 𝐸𝑖 in a chromosome are selected, then their positions in
the chromosome are randomly exchanged.

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.

g
t

t

𝑅

o

5

𝑅

w

5

p
t
c
‘
n
t
s
T
b

(

𝑌

a

𝑌

H

Individual insertion. To insert the individuals the mu+lambda ap-
proach is employed [27]. The idea is to merge the population and
offsprings together, and then from the merged set, select the best
possible non-dominated solutions of the population size.

5. Test scenario generation case studies

In this section we demonstrate how AmbieGen can be applied to
three different types of environment. We consider the following test
generation case studies: a smart-thermostat, robot obstacle avoidance
system, and vehicle lane-keeping assist system (LKAS). In every case
study the autonomous agent controller has a different level of com-
plexity: simple proportional–integral–derivative (PID) controller for the
thermostat, a robot controller based on the nearness diagram naviga-
tion approach [28], and a deep neural network based controller for
the vehicle. We evaluate AmbieGen by comparing the results obtained
with random search for all the three problems. For the LKAS system
case study we also compare our results with state-of-the art approach,
presented at SBST2021 tool competition.1

5.1. Wireless thermostat case study

Nowadays, home automation becomes more and more popular.
Automatic temperature control systems are one of the most commonly
used. Such systems consist of a controller, temperature sensor and a
heating element. The controller goal is to keep the room temperature
according to the programmed schedule. The simplest solution is to
send ‘‘ON’’ and ‘‘OFF’’ commands to the heater, when the temperature
needs to be increased or decreased. More sophisticated thermostats
implement PID controllers to achieve smoother operation. Testing the
controllers in the simulators for different temperature schedules is
necessary in order to ensure their precision and reveal the possible
limitations. In this study, the test generation goal is to create scenarios
accounting for the scheduled temperature as well as environmental
conditions.

5.1.1. System under test description
In our case study we consider a simple real-world wireless thermo-

stat system. It consists of one room with a heater, sensor, and controller
and is part of a larger system, described in more details in [29]. The
room dimensions are approximately 2.5 m ×4 m and the height is about
2.6 m. The heating element is a Steelpro 1.5 Kw electronic convector,2
which is controlled via a wireless Z-wave protocol based switch. The
temperature is measured by a Aeotec MultiSensor 6 device,3 placed
at about 2.2 m from the floor. The controller is a Raspberry Pi 3B
running Z-wave.me with a RaZberry 44 daughter card acting as Z-
wave network controller. The Raspberry Pi has a user defined schedule
of temperature levels; it reads the thermometer measured values and
if needed (according to the schedule and required temperature) it
switches on (off) the heating.

The data for the room temperature was collected for the period
from December 2019 to May 2020. From the data, we could observe
7 patterns of temperature dynamics after ON/OFF commands of the
thermostat. As an example, in Fig. 3 you can see that the temperature
decreases with different rates, which depends on such environmental
factors as indoor and outdoor temperature, humidity, etc. We represent
different temperature dynamics patterns, accounting for the different
environmental conditions, with different thermostat models.

The thermostat should be able to keep the scheduled temperature
with the precision of 1 degree Celsius, under different environmental
conditions in the room. The goal of the search is to find the sched-
ule and the corresponding thermostat operating mode, to falsify this
requirement.

1 https://sbst21.github.io/tools/.
2 https://www.stelpro.com.
3 https://aeotec.com/z-wave-sensor.
4

6

https://z-wave.me/products/razberry.
Table 2
Attribute types for thermostat problem.
𝐴1 , 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝐶◦ 𝐴2 , 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑚𝑖𝑛 𝐴3 , 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒

[16, 17, . . . ,25], [60, 75, . . . , 240] [1, 2, . . . , 7]

Table 3
Example of individual representation for the first case study.

𝐸1 𝐸2 𝐸3 𝐸4 𝐸5

𝐴1 , 𝑔𝑜𝑎𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 17 23 17 21 17
𝐴2 , 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 5 4 12 2 1
𝐴3 , 𝑚𝑜𝑑𝑒 1 3 2 4 1

5.1.2. Problem representation
For this problem we define three high-level input attributes: 𝐴1 the

oal temperature value, 𝐴2 the duration of this temperature and the
hermostat operation mode 𝐴3. Each test case contains 𝑚 environmental

elements 𝐸. For each of them we need to specify the value of each of
the attributes 𝐴1, 𝐴2, 𝐴3. The allowable ranges for the attributes are
shown in Table 2.

An example of encoding of the individual representing the temper-
ature schedule illustrated in Fig. 3 (yellow line) is shown in Table 3.
Each environmental element represents a part of the schedule, i.e, part
of agent’s ‘‘mission’’, as well as the operating mode.

We define two restrictions 𝑅1 and 𝑅2 for the test scenarios. For 𝑅1,
he duration of the schedule 𝑇 cannot exceed 24 h:

1 ∶
𝑚
∑

𝑖=1
𝐴2𝑒𝑖 < 𝑇 , 𝑇 = 24 (3)

This equation represents the sum of the values of attribute 𝐴2 (duration
f the set temperature) of each of the 𝑚 environmental elements.

For 𝑅2, the temperature cannot change too sharply, i.e., more than
degrees between two adjacent environmental elements 𝐸𝑖 and 𝐸𝑖+1:

2 ∶∣ 𝐴1𝑒𝑖 − 𝐴1𝑒𝑖+1 ∣< 5, 𝑖 ∈ [1, 𝑚 − 1], (4)

here 𝑚 is the number of environmental elements in the test case.

.1.3. Fitness function definition
To calculate one of the fitness functions we need to create a sim-

lified model of the system. To this end, we extracted the data from
he experimental measurements and selected the series of data points,
orresponding to behaviour of the thermostat after ‘‘switch on’’ and
‘switch off’’ commands in different thermostat operation modes. The
ext challenge is to select the model structure. In our case it is possible
o build a first-principles model, as the heating and cooling of a closed
pace is guided by physical laws, such as Newton Law of cooling [30].
he law has an exponential nature, therefore our model structure is
ased on increasing and decreasing exponential function.

We propose the following time-discret model structure for the 𝑀1
‘‘on’’) mode:

= 𝑘𝑜𝑛1 ∗ (1 − 𝑒−𝑘𝑜𝑛2∗𝑡𝑖) + 𝑇0 (5)

nd for the 𝑀2 (‘‘off’’) mode:

= 𝑘𝑜𝑓𝑓1 ∗ (𝑒−𝑘𝑜𝑓𝑓2∗𝑡𝑖) + 𝑇0 − 𝑘𝑜𝑓𝑓1 (6)

ere 𝑘𝑜𝑛1, 𝑘𝑜𝑛2, 𝑘𝑜𝑓𝑓1, 𝑘𝑜𝑓𝑓2 are the unique coefficients defining the
model behaviour in a particular environment. 𝑇0 - is the starting
temperature and 𝑡𝑖 - the discreet time step value, 𝑌 - the output
temperature. We keep the coefficients in a table, such as Table 4, where
coefficients for the three models are shown. As an example, in Fig. 4
you can see how the model 1 with the coefficients from the table, fits
the data from real measurements. One model includes two equations
describing behaviour in ‘‘on’’ and ‘‘off’’ modes. In total, we identified 7
models having different coefficients in the equations, corresponding to

the thermostat operating in different environmental conditions.

https://sbst21.github.io/tools/
https://www.stelpro.com
https://aeotec.com/z-wave-sensor
https://z-wave.me/products/razberry

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.
Fig. 3. Different temperature dynamics patterns.
Table 4
Model coefficients.

Model 𝑘𝑜𝑛1 𝑘𝑜𝑛2 𝑘𝑜𝑓𝑓1 𝑘𝑜𝑓𝑓2
1 7.7 0.11887928 5.6 0.02929884
2 7.9 0.11180434 5.2 0.04803319
3 6 0.14704908 4.8 0.1203876

Fig. 4. Model (red points) fitting the experimental data (blue points). (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

To obtain the coefficients, we fit the experimental data by a curve
with minimal deviation. We used python SciPy library, namely 𝑐𝑢𝑟𝑣𝑒_𝑓𝑖𝑡
function from 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 class, which is based on the non-linear least
squares method [31]. The average root mean square error between
original and approximated data did not exceed 0.5 degrees Celsius.

Next, we specify the requirement for our system and introduce the
fitness function based on this requirement: the root-mean square error
between the scheduled temperature and the temperature set with the
thermostat should not exceed 1 degree C◦.

To calculate the first fitness function, 𝐹1𝑡ℎ𝑒𝑟𝑚, we execute the test
scenario 𝑇𝐶 using the simplified model. We obtain the output values
of the room temperature set by the thermostat 𝑌 and calculate the root-
mean square error between 𝑌 and the temperature values defined in the
schedule 𝑆:

𝐹1𝑡ℎ𝑒𝑟𝑚 =

√

√

√

√

𝑛
∑

𝑖=1

(𝑌𝑖 − 𝑆𝑖)2

𝑛
, (7)

where 𝑛 is the number of data points in the output. For the test cases
that do not satisfy the restrictions (3) and (4) we set the 𝐹1𝑡ℎ𝑒𝑟𝑚 to 0.

We calculate the second fitness function, 𝐹2𝑡ℎ𝑒𝑟𝑚 according to (2).
In order to prevent obtaining the test cases with low fault revealing
power, we also add a search constraint 𝐶𝑡ℎ𝑒𝑟𝑚:

𝐶𝑡ℎ𝑒𝑟𝑚 ∶ |𝐹1𝑡ℎ𝑒𝑟𝑚| − 1.5 > 0, (8)

5.1.4. Genetic algorithm configuration
We used the following GA (AmbieGen SO) and NSGA-II (AmbieGen

MO) configurations for the smart thermostat problem: population size:
250, number of generations: 200, mutation rate: 0.4, crossover rate: 1,
algorithm type: generational, number of evaluations: 50 000.
7

Fig. 5. Examples of scenarios for the smart thermostat.

We are using a high mutation rate, as from our experience, it
allowed to converge to better solutions faster. In our implementation a
𝜇+𝜆 insertion approach is used, where only the best individuals from
previous generation and offsprings are inserted to the next generation.
In the generational GA the number of offsprings inserted in the popula-
tion is equal to the population size. We limit the number of evaluations
to 50 000, as typically after this number was enough for the algorithm
to converge. The average time to run 50 000 evaluations was 136.691 s
for GA and 123.665 s for NSGA-II.

5.1.5. Scenario generation
Finally, we discuss an example of the produced scenarios. In Fig. 5(a)

you can see a scenario with a low fitness value of 0.76 degrees,
indicating that the temperature deviates from the schedule 0.76 degrees
on average. On the contrary, in Fig. 5(b) the scenario produced by
AmbieGen search has a higher fitness of 2.4 degrees. Clearly, this
scenario is more likely to be unacceptable to the user, comparing to
the first one.

5.2. Autonomous navigating robot case study

The autonomous robotic systems are used in many domains: from
everyday tasks such as room cleaning to critical missions such as
navigation to harsh environments. For every application, we need to
have a high confidence that their behaviour will be safe. Running the
simulations of the system in various virtual environments can uncover
the possible failures of the robot in the early design stage.

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.
In this case study we consider an autonomous mobile robot, nav-
igating in a space with obstacles. The robot has to reach the goal
location, relying only on its range sensors and the planning algorithm.
The goal is to generate the environment, i.e., a room with obstacles
that forces the robot to fail. Similar test generation problems were
addressed by [15,16]. In [15] the navigation maps are created using
the procedural content generation technique. Then robots are assigned
a randomized route to follow. The test scenario is an environment pop-
ulated with robots, obstructions, and mission allocations. Sotiropoulos
et al. characterize a map by its size, percentage of obstruction (due
to objects), and its degree of smoothness (resulting from the ground
local deformations). The robot is given a navigation mission, defined
by a starting position and a target arrival position, situated in the map
boundaries. Both approaches only consider the random generation.

5.2.1. System under test description
We ran the simulations in the Player/Stage simulation environment

(see Fig. 6), which is one of the most commonly used in the robotics
field [32]. We also considered using such simulators as Gazebo,5
MORSE,6 and Argos.7 One of the advantages of Player/Stage for our
study was the possibility to load the automatically generated environ-
ment configuration files as well as the big number of implemented
models and controllers. For Gazebo and MORSE the environments have
to be manually created in a dedicated 3D design tool. For Argos,
the maps can be generated automatically, however the number of
implementation examples is limited. One of them, which includes a
planning algorithm implementation, is dedicated to robot swarms,
which we plan to explore more in the future [33].

For simulations we used a Pioneer 3-AT mobile robot8 model pro-
vided by the Player/Stage simulator. The robot is equipped with a
SICK LMS200 laser with the sensing range of 10 m, it has four wheels
and is capable of speeds of up to 0.8 m/s. One of the planning
algorithms provided by the simulator is using the nearness diagram
(ND) navigation method. This is a reactive navigation method, where
the motion commands are computed based on the robot sensor data.
The method computes the optimal motion command to avoid collisions
while moving the robot towards a given goal location. Before the robot
mission starts, it runs the A* planning algorithm to obtain the route
towards the goal. Then it uses its ND algorithm for navigation. To
increase the challenge for the robot we applied the Ramer–Douglas–
Peucker algorithm9 to reduce the number of waypoints in the created
route.

Given the goal location the robot should navigate to it without
bumping into obstacles. The testing approach objective is to find envi-
ronments, when the navigation algorithm fails and the robot does not
reach the goal or the robot hits an obstacle during the navigation. The
scenario is represented as a bitmap, where the location of obstacles
is specified, as well as by a set of waypoints for the robot to follow.
Failures are detected by a daemon script that continuously monitors
the simulation environment.

5.2.2. Problem representation
In this scenario generation case study the environment is repre-

sented by a map with obstacles. We define the map size to be 50 x 50 m.
Each environment part 𝐸𝑖 corresponds to a space of the size 1 x 50 m.
There is one obstacle in each environmental element. In total there
are 50 elements 𝐸𝑖, and 50 obstacles in each test case. The scenario
matrix size 𝑀 is fixed and is equal to 50. We define three attributes

5 http://gazebosim.org/.
6 https://github.com/morse-simulator/morse.
7 https://www.argos-sim.info/.
8 https://www.generationrobots.com/media/Pioneer3AT-P3AT-RevA-

datasheet.pdf.
9 https://rdp.readthedocs.io/en/latest/.
8

Fig. 6. Player/Stage simulation environment for autonomous robots.

Table 5
Attribute types for autonomous robot problem.
𝐴1 , 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑡𝑦𝑝𝑒 𝐴2 , 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑠𝑖𝑧𝑒 𝐴3 , 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

[horizontal, vertical] [5,6, . . . , 15] [1, 2, . . . , 50]

Table 6
Example of individual representation for the second case study.

𝐸1 𝐸2 𝐸3 𝐸4 𝐸5

𝐴1 , 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑡𝑦𝑝𝑒 0 1 0 0 0
𝐴2 , 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑠𝑖𝑧𝑒 15 10 10 15 10
𝐴3 , 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 12 25 35 15 38

Fig. 7. An example of the test case represented by an individual in Table 6.

describing the environment: 𝐴1, the type of the obstacle, 𝐴2 position
of the obstacle and 𝐴3 the size of the obstacle. This gives the size 𝑁
of the scenario matrix of 3. The values for the attributes are specified
in Table 5. We use two types of obstacles — vertical and horizontal
walls. The size is the total obstacle length in meters. The position is
the obstacle centre location in the element 𝐸𝑖.

An example of individual encoding that represents a map with
obstacles in Fig. 7 is shown in Table 6. Here the map size is 50 m x
25 m and each environmental element represents a part of the map
of the size 50 m x 5 m. For each environmental element the location
of the centre of the obstacle (marked with a green circle) is specified.
Horizontal obstacle is encoded with the value of 0 and the vertical
obstacle with the value of 1.

We define two restrictions. First, 𝑅1: only one obstacle per element
𝐸𝑖. Second, 𝑅2: the obstacles cannot cover completely or intersect with
the initial and target robot location points.

5.2.3. Fitness function definition
The intelligent robotic systems are typically equipped with a plan-

ning algorithm that builds a path to the goal location as the robot
moves through the environment. The trajectory is adjusted as the new
obstacles are discovered by the robot.

In the simplified case, the robot knows about the location of all
the obstacles in advance. Therefore, as the robot approximated model

http://gazebosim.org/
https://github.com/morse-simulator/morse
https://www.argos-sim.info/
https://www.generationrobots.com/media/Pioneer3AT-P3AT-RevA-datasheet.pdf
https://www.generationrobots.com/media/Pioneer3AT-P3AT-RevA-datasheet.pdf
https://rdp.readthedocs.io/en/latest/

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.
Fig. 8. Examples obtained robot navigation maps.

we are using the Python robotics implementation of A* planning algo-
rithm [20], which creates the route given the map, start and destination
location. We have selected the A* because it is a deterministic algo-
rithm and always finds a route, if it exists. The disadvantage is that
the computations take longer time, than for non-deterministic planning
algorithms such as RRT*.

The requirement for our system is that the robot should navigate
from the start to the goal location, without bumping into an obstacle.
To falsify this requirement, intuitively, the test case should force the
robot to follow a complex path to the goal location.

The first fitness function, 𝐹1𝑟𝑜𝑏𝑜𝑡, maximizes the distance the robot
would have to travel to find the goal. Evidently, travelling a longer
distance, the robot takes a more complex path to the goal location, that
involves a higher number of turns. For the test cases that do not meet
the restrictions 𝑅1 and 𝑅2, 𝐹1𝑟𝑜𝑏𝑜𝑡 is set to 0. The second fitness function
is calculated according to (2).

5.2.4. Genetic algorithm configuration
We used the following GA (AmbieGen SO) and NSGA-II (AmbieGen

MO) configurations: population size: 100, number of generations: 400,
mutation rate: 0.4, crossover rate: 1, algorithm type: steady state with
50 offsprings, number of evaluations: 20,000.

For this problem we used a smaller number of offsprings to run more
generations for the same time budget. The A* algorithm implementa-
tion was computationally expensive to execute. The average time to
run 20,000 evaluations was 2727.2 s for AmbieGen SO and 2394.9 s
for AmbieGen MO.

5.2.5. Scenario generation
In Fig. 8 we show examples of the generated scenarios, i.e., rooms

with obstacles obtained by random generation Fig. 8(a) and with
AbmieGen Fig. 8(b). In Fig. 8(a) the length of the robot path towards
the goal is 78.76 m, while in Fig. 8(a) it is 202.36 m. Evidently, the
second scenario poses a more challenging navigation environment for
the robot, than the first scenario. The video demonstration of the fault
revealed for the robot model in the Player/Stage environment can be
found via the link: https://figshare.com/s/7208f6d5ce19e1476474.

5.3. Lane keeping assist system case study

Self-driving cars have a perspective of becoming a part of our lives
in the near future. These systems are safety-critical and should be well
tested to avoid unwanted consequences. Running the simulations in
the virtual environments can reveal the possible faults of their control
algorithms.

In this case study, we generate virtual roads to test car Lane Keeping
Assist System (LKAS). The ego-car, i.e., the test subject, should follow
the lane of a given trajectory. The testing approach goal is to generate
a valid road topology, that forces the ego-car to drive off its lane .
9

Fig. 9. The screenshot from a BeamNG simulation environment.

Table 7
Attribute types for vehicle problem.
𝐴1 , 𝑟𝑜𝑎𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑡𝑦𝑝𝑒 𝐴2 , 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑟𝑜𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝐴3 , 𝑟𝑜𝑎𝑑 𝑡𝑢𝑟𝑛 𝑎𝑛𝑔𝑙𝑒

[‘‘straight’’, [5, 6, . . . , 50] [5, 10, . . . , 85]
‘‘turn left’’,
‘‘turn right’’]

Table 8
Example of individual representation for the second case study.

𝐸1 𝐸2 𝐸3 𝐸4 𝐸5

𝐴1 , 𝑟𝑜𝑎𝑑 𝑡𝑦𝑝𝑒 0 1 1 2 0
𝐴2 , 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑟𝑜𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 15 – – – 5
𝐴3 , 𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 0 60 60 75 0

A number of tools were suggested for automatic generation of virtual
roads, such as DeepJanus [14] and AsFault [5]. This year, four tools,
such as Frenetic, Deeper, Swat, and GA-Bézier were presented at the
SBST2021 tool competition [34]. The SWAT tool is the submission of
the random generator based implementation of our approach for virtual
road generation.

5.3.1. System under test description
For simulating the car and the environment, we used the simulation

pipeline initially provided by [14] and adapted for the SBST2021 tool
competition. This environment uses the BeamNG.tech driving simula-
tor [35], a freely available research-oriented version of the commercial
game BeamNG.drive (see Fig. 9). The test subject is the builtin driving
agent, BeamNG.AI. The car controller adopts a behavioural cloning ap-
proach, i.e., the deep learning component (DN) learns a direct mapping
from the sensor camera input to the steering angle value to be passed
to the actuators [36].

5.3.2. Problem representation
In this case study, the test scenario is a flat road surrounded by plain

green grass with the fixed weather conditions: sunny clear day. The
road layout (i.e., number and width of lanes) is fixed and consists of
two lanes.

We divide the road into 𝑚 road segments. Each environment el-
ement 𝐸𝑖 corresponds to one road segment. To describe the road
segment we define three attributes: the type of the road 𝐴1 (going
straight, turning right and turning left), the length of the straight road
segment 𝐴2, and the angle of the turn of the curved segment 𝐴3. The
attributes representation is shown in Table 7. The test scenario contains
3 rows (𝑁 = 3) and a variable number of columns 𝑀 , depending on
how many road segments fit in a map. In our scenarios and at SBST
competition, the map size was 200 x 200 m.

An example of individual encoding that represents a road topology
illustrated in Fig. 10 is shown in Table 8. Each environmental element,
𝐸𝑖, 𝑖 ∈ [1, 5], represent one road segment. The road segments are
encoded as follows: 0 - for straight type, 1 - turning right and 2 - turning
left .

https://figshare.com/s/7208f6d5ce19e1476474

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.

𝑥

Fig. 10. An example of the test case represented by an individual in Table 8.

Fig. 11. Examples of valid (a) and invalid roads: (b) - out of bounds, (c) - too sharp,
(d) - intersecting.

Fig. 12. The simplified car model parameters.

The test cases have the following restrictions : the roads cannot be
too sharp, cannot intersect and should not go out of the map bounds.
Examples of valid and invalid roads are shown in Fig. 11.

5.3.3. Fitness function definition
To calculate the test scenario fitness we need to create the simplified

model of the car. Similarly to the thermostat problem, we built the car
model from the first principles as the car movement can be described by
a well known car kinematic model [37]. To describe the car movement
we use the equations from [18], see Fig. 12. To keep the car close to
the lane centre we adopt Stanley control [38].

In the equations below, 𝑥, 𝑦 - are the current coordinates of the car
on the map, 𝜃 is the angle between car direction and a reference plane,
𝑎 and 𝑏 - constants, corresponding to velocity value, 𝑑 - the distance of
the car from the closest point on the road. When 𝑑 is smaller than a
certain threshold 𝑒, the car goes straight, when 𝑑 is larger than 𝑒 - the
car turns either left or right. The turn angle is adopted depending on
the car speed and the deviation from the road lane centre.

Therefore we have the following fine-tunable parameters: 𝑘, 𝛼, 𝛽
and the initial speed 𝜈0. In order to fine tune the parameters, we
created a dataset with the road points and the corresponding car model
path 𝑆 recorded by the simulator while executing the scenarios. Then
we compared the outputs of our model with the simulated car path
10
Table 9
Fine tuned values for the surrogate model.
𝜈0 𝑘 𝛼 𝛽

7 3.5 0.3 0.1

Fig. 13. The simplified and full car model trajectory given the same road points.

using such metric as a ‘‘Hausdorff distance’’. A similar metric, Frechet
distance, was used in [39] to compare the similarity between roads.
The goal was to minimize the Hausdorff distance. To perform the
optimization we use the sci-py Nelder–Mead algorithm implementation.
However, other optimization algorithms can be used, such as genetic
algorithms. The set of the parameters that indicated the lowest average
Hausdorff distance of 13.74 is shown in Table 9.

̇ = 𝜈 ⋅ 𝑐𝑜𝑠𝜃 (9)

𝑦̇ = 𝜈 ⋅ 𝑠𝑖𝑛𝜃 (10)

𝜃̇ =

⎧

⎪

⎨

⎪

⎩

tan−1(𝑘
𝜈(𝑡)) 𝑖𝑓 𝑑 < −𝑒

− tan−1(𝑘
𝜈(𝑡)) 𝑖𝑓 𝑑 > 𝑒

0 𝑖𝑓 − 𝑒 ≤ 𝑑 ≤ 𝑒

(11)

𝜈̇ =

{

−𝛼 𝑖𝑓 𝑑 < −𝑒, 𝑑 > 𝑒
𝛽 𝑖𝑓 − 𝑒 ≤ 𝑑 ≤ 𝑒

(12)

In Fig. 13 we depict the surrogate (blue points) and the full
model (green points) follow the interpolated road points (yellow). The
Hausdorff distance between the two roads is 5.153.

In this case study the requirement for the vehicle is to stay within
the road lane bounds and not go out of the lane for more than a defined
threshold, proportional to the area of the vehicle outside the lane. For
instance, the threshold of 0.5 means, that the car is considered to be
out of the lane if more than the half of the vehicle lies outside the lane.
In our case study we use a threshold of 0.85.

Finally, as the fitness function, 𝐹1𝑣𝑒ℎ, we used the maximum devia-
tion 𝑑 from the lane centre after executing the test case, as in [5,6]. The
test cases with the highest value of the fitness function are most likely
to violate the requirement, as they force the car to deviate further from
the lane centre. For the test cases that do not meet the restrictions,
𝐹1𝑣𝑒ℎ is set to 0. The second fitness function was calculated according
to (2).

5.3.4. Genetic algorithm configuration
We used the following GA and NSGA-II configurations: population

size: 500, number of generations: 200, mutation rate: 0.4, crossover
rate: 1, algorithm type: generational, number of evaluations: 100 000.

We are using a higher population size, rather than the bigger
number of generations, as from our experience, with bigger population
the results were more consistent across different runs. The average time
to run 100000 evaluations was 1522.405 s for GA and 1380.66 s for
NSGA-II.

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.
Fig. 14. The road points (black) generated after applying affine transformations to the
initial vector 𝜈1.

5.3.5. Scenario creation
To create the road points 𝑝1 − 𝑝7, used to generate the road, we

applied affine transformations to the initial vector 𝜈1, according to the
road types specified in the generated scenario, i.e., "straight N meters",
"turn right/left 𝑁 degrees". Our approach is described in a more detail
in [40] (see Fig. 14).

For example, to obtain 𝜈2 we moved the 𝜈1 parallelly 𝑁 meters
(‘‘straight 𝑁 meters’’). To obtain 𝜈3 we turned 𝜈2 𝑁 degrees anticlock-
wise (‘‘turn left 𝑁 degrees’’). In Fig. 15 we show examples of the
generated test cases, that forced the car to go out of the lane. The
yellow points correspond to the road lane centre, the blue points —
to the surrogate model path, green points — the full model path. When
the virtual car went out of the lane bounds, the simulation recording
stopped, therefore we see the full model path only for the part of the
road. The video demonstration of the failure for the car model can be
found via the link: https://figshare.com/s/b4a096f0a66e0abbe7b1.

6. Experimental evaluation

6.1. Research questions

We evaluate our approach using the three test case generation case
studies described above. For each of the case studies we answer the
following research questions.

RQ1. (Comparing random, single-objective, and multi-objective
search). Considering the single and multi objective versions of AmbieGen as
well as the random search, which configuration produces the test scenarios
with the higher fault revealing power given the same time budget?

Motivation: Firstly we would like to know if the use of evolutionary
search is beneficial and allows to produce better solutions, than simple
random search. Next, we want to know if adding additional fitness
function for diversity allows to find solutions with a higher fault
revealing power. We expect AmbieGen MO to produce solutions with
the fault revealing power, i.e., 𝐹1 fitness function value at least as
high as for the solutions of AmbieGen SO. Previous works on novelty
search [21,41] have shown that adding a fitness function for diversity
may increase the convergence speed.

Experiment design: We give the same number of evaluations to all
the three algorithms and compare the average 𝐹1 fitness function value
of the best solutions found. We repeat the measurements 30 times.

RQ2. (Comparing diversity of the solutions found by the single-
objective and multi-objective search). To what extent the diversity of
the solutions found by the multi objective AmbieGen configuration is higher
than the diversity of the single objective configuration solutions?

Motivation: This research question is aimed to quantify the dif-
ference between the diversity of the solutions produced by AmbieGen
11
So and AmbieGen MO. We expect the AmbieGen MO to produce more
diverse scenarios.

Experiment design: Given the same time budget, we compare the
average diversity of the best 10 solutions found by the single-objective
algorithm and the average diversity of the Pareto optimal solutions
found by the multi-objective algorithm. We repeat each measurement
30 times.

For the autonomous robot and lane keeping assistant case study we
also answer the following question:

RQ3. (Comparing our AmbieGen with the available baselines)
To what extent does our approach perform better in generating test scenarios
for the full model in comparison with the available baselines?

Motivation: This research question is aimed to quantify the effec-
tiveness of AmbieGen in the number of revealed failures for the full
models used in simulations.

Experiment design:
Autonomous robot case study. To the best of our knowledge, there

are no available test generation baselines for the autonomous robot
system. Therefore we compare the generated scenarios with the random
search by giving the same time budget of two hours and executing
the generated environments in the robotic simulator. We repeat the
experiment 30 times.

Lane keeping assist system. For the lane keeping assist system, we
compare AmbieGen with the open-source approach that showed the
best results in the SBST2021 tool competition [34], i.e., Frenetic
tool [42]. In the competition the same test evaluation pipeline was
provided to all the participants. It allowed to compare the generated
test cases for the number of faults revealed (forcing the ego-car to go
out of the lane), the diversity of the revealed faults and the proportion
of valid test cases. We perform the same 2 h experiment as in the
competition, averaging the results over 30 runs.

For all the research questions, to confirm the statistical significance
of the results we performed a two-tailed non-parametric Mann–Whitney
U test and measured the effect size using the non-parametric measure
Cliff’s delta. We ran all the experiments on a PC running Microsoft
Windows 10 Home and featuring a quad-core AMD Ryzen 7 4800HS
CPU @ 2.90 GHz, 16 GB of Memory, and an Nvidia GeForce GTX 1660
GPU @ 6 GB.

6.2. Results

RQ1. (Comparing random, single-objective, and multi-objective
search) In Figs. 16, 17 and 18, we present the best fitness value
found over generations by Random search (green boxplots), AmbieGen
SO (red boxplots) and AmbieGen MO (blue boxplots) averaged over
30 runs for the three problems. We considered the fitness function
accounting for the fault revealing power and described in Eq. (1).

We compare the fitness function values found after the allowed
number of evaluations with a two-tailed non-parametric Mann–Whitney
U test. The obtained p-values and effect sizes of the problems are shown
in the Tables 10, 11, and 12, respectively.

Thermostat case study. From Fig. 16 we can see that on average ran-
dom search (yellow) converges to values of −1.608, while AmbieGen
SO (red) and AmbieGen MO (blue) find the solutions with twice higher
fitness value of −3. Statistical tests confirm that AmbieGen outperforms
the random search with 𝑝 < 0.01. We can observe that on average
the SO converges faster than MO, however, the difference between the
converged values is negligible.

Autonomous robot case study. After 20 000 evaluations, on aver-
age, random search produced solutions with the highest fitness value
of −158.89. AmbieGen outperforms the random search, with the SO
configuration producing 42% fitter solutions of −278.2 and the MO
configuration producing solutions of −251.6 fitness value. Given the
same time budget, AmbieGen SO produces almost 10% fitter solutions
than AmbieGen MO.

https://figshare.com/s/b4a096f0a66e0abbe7b1

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.
Fig. 15. Examples of fault revealing scenarios for vehicle lane keeping assist system.
Table 10
Results of two-tailed non-parametric Mann–Whitney U test and Cliff’s delta effect sizes
for the thermostat case study.

𝑆𝑂 (𝐺𝐴) 𝑀𝑂 (𝑁𝑆𝐺𝐴2) 𝑅𝑎𝑛𝑑𝑜𝑚

𝑆𝑂 (𝐺𝐴)

𝑀𝑂 (𝑁𝑆𝐺𝐴2) 𝑝 = 0.378
0.133, 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒

𝑅𝑎𝑛𝑑𝑜𝑚 𝑝 < 0.01 𝑝 < 0.01
1, 𝑙𝑎𝑟𝑔𝑒 1, 𝑙𝑎𝑟𝑔𝑒

Fig. 16. Best fitness function value over evaluations for the thermostat case study.

Table 11
Results of two-tailed non-parametric Mann–Whitney U test and the Cliff’s delta values
for the autonomous robot case study.

𝑆𝑂 (𝐺𝐴) 𝑀𝑂 (𝑁𝑆𝐺𝐴2) 𝑅𝑎𝑛𝑑𝑜𝑚

𝑆𝑂 (𝐺𝐴)

𝑀𝑂 (𝑁𝑆𝐺𝐴2) 𝑝 < 0.01
0.772, 𝑙𝑎𝑟𝑔𝑒

𝑅𝑎𝑛𝑑𝑜𝑚 𝑝 < 0.01 𝑝 < 0.01
1, 𝑙𝑎𝑟𝑔𝑒 0.978, 𝑙𝑎𝑟𝑔𝑒

Lane keeping assistant case study. In 100 000 evaluations random
search produced scenarios with the average highest fitness of −9.
AmbieGen MO and SO produced almost 50% fitter solutions of −17
and -16, respectively. There was no statistical difference between the
best solutions of SO and MO.

Overall, We can see that for all the problems, AmbieGen finds on
average from 40% to 50% better solutions, than the random search.
AmbieGen SO and AmbieGen MO show no statistical difference in the
produced solutions for the thermostat and lane keeping assistance prob-
lem. For the autonomous robot problem, the AmbieGen SO produces
better solutions with a large effect size given 20 000 evaluations.
12
Fig. 17. Best fitness function value over evaluations for the autonomous robot case
study.

Table 12
Results of two-tailed non-parametric Mann–Whitney U test and the Cliff’s delta values
for lane keeping assistant case study.

𝑆𝑂 (𝐺𝐴) 𝑀𝑂 (𝑁𝑆𝐺𝐴2) 𝑅𝑎𝑛𝑑𝑜𝑚

𝑆𝑂 (𝐺𝐴)

𝑀𝑂 (𝑁𝑆𝐺𝐴2) 𝑝 = 0.0501
0.295, 𝑠𝑚𝑎𝑙𝑙

𝑅𝑎𝑛𝑑𝑜𝑚 𝑝 < 0.01 𝑝 < 0.01
0.877, 𝑙𝑎𝑟𝑔𝑒 0.886, 𝑙𝑎𝑟𝑔𝑒

Fig. 18. Best fitness function value over evaluations for the lane keeping assistant case
study.

AmbieGen SO produced scenarios with highest fault revealing
power for the autonomous robot case study. For the thermostat
and LKAS case studies the difference in the solution fitness
of AmbieGen SO and MO was negligible. Overall, AmbieGen
outperforms the random search with ‘‘large’’ effect size in all
case studies.

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.
Fig. 19. Diversity of the test cases in the last generation for the thermostat case study.

Fig. 20. Diversity of the test cases in the last generation for the autonomous robot
case study.

Fig. 21. Diversity of the test cases in the last generation for the lane keeping assistant
case study.

RQ2. (Comparing diversity of the solutions found by the single-
objective and multi-objective search). In Figs. 19, 20, and 21, we
compare how diverse are the produced solutions by AmbieGen SO and
AmbieGen MO.

For SO, we select 10 fittest individuals and compute the diversity
according to (2) between each pair of individuals. We report the
average value. For NSGA-II, we compute the diversity (2) between
each pair of Pareto optimal solutions. The size of the Pareto front
was 7 individuals on average. All the solutions in the Pareto front
have a fault revealing (𝐹1) fitness function value higher than a certain
fault-revealing threshold, established by the developer.

For all the problems, the two-tailed non-parametric Mann–Whitney
U test confirmed that AmbieGen MO produces more diverse solutions,
than AmbieGen SO. For the smart thermostat problem, the MO scenar-
ios are more diverse with a 𝑝-value smaller than 0.01 and a ‘‘large’’
effect size of 0.852. For the autonomous robot problem, AmbieGen MO
scenarios are more diverse with a 𝑝-value smaller and a ‘‘large’’ effect
size of 1. For the lane keeping assist system, MO scenarios are more
diverse with a 𝑝-value of 0.0109 (𝑝 ≤ 0.05) and a ‘‘medium’’ effect size
of 0.383.
13
Fig. 22. Number of faults revealed for the autonomous robot.

In all the considered problems AmbieGen MO produced more
diverse test cases: with ‘‘large’’ effect size for thermostat and
robot case studies and ‘‘medium’’ effect size for the LKAS case
study.

(RQ1, RQ2 summary:) AmbieGen MO can find scenarios of
the same quality as AmbieGen SO and better scenarios with
a large effect size than the random search. Moreover, Am-
bieGen MO produces a more diverse set of scenarios, than
AmbieGen SO. Overall, we recommend using the AmbieGen
MO configuration.

RQ3. (Comparing AmbieGen with the available baselines).
Autonomous robot case study. In this subsection we compare the

number of faults revealed by the NSGA-II configuration of AmbieGen
(AmbieGen MO) and the random search. We created a scenario eval-
uation pipeline, where firstly a two hour budget is given to produce
the scenarios. Then all the scenarios are passed to the simulator and
executed. The daemon script monitors the execution and reports a
failure when the robot stalls and does not reach a goal. We repeated
the experiment 30 times in both configurations. You can see the average
number of failures detected in Fig. 22. AmbieGen produced on average
9 failures in two hours, in comparison to the 2 failures of random
search. AmbieGen outperforms the random search with a 𝑝-value less
than 0.01 and a large effect size of 1.

Lane keeping assist system case study. In this subsection we
report results of evaluating AmbieGen MO (AmbieGen) and the Fre-
netic tool (Frenetic). In addition we evaluate the random search (RS)
configuration of AmbieGen and the AmbieGen MO configuration based
on the full model (Full).

For AmbieGen we used a simplified configuration for virtual road
generation, where only, 5100 evaluations are performed (population
size 100, number of generations 200, number of offsprings — 25) in
order to produce more test scenarios given a limited time budget. We
gave the same time budget (5090 evaluations) for the random search
to produce the solutions.

Finally, for the full model we used a configuration previously sug-
gested by Gambi et al. [5] for Asfault tool, that also uses the full model
to guide the search. In this configuration the population size is 25,
number of offsprings is 4 and the number of generations is limited by
the time budget, i.e, two hours.

Approaches were evaluated using the SBST2021 code pipeline [6],
that integrates the test generators with the BeamNG simulator by vali-
dating, executing, and evaluating the generated test cases. We executed
the SBST21 2 h experiment, where the failure is revealed when 0.85
percent of the car area goes out of the lane. Also, the driving agent
travels up to 70 km/h.

The test cases are compared in terms of the number of faults Fig. 23,
the diversity of the faults Fig. 24, and the proportion of the valid test

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.
Fig. 23. The number of revealed faults.

Table 13
Mann–Whitney test p value and Cliff’s delta for the number of faults.

𝐴𝑚𝑏𝑖𝑒𝐺𝑒𝑛 𝐹𝑟𝑒𝑛𝑒𝑡𝑖𝑐 𝐹𝑢𝑙𝑙 𝑅𝑆

𝐴𝑚𝑏𝑖𝑒𝐺𝑒𝑛

𝐹𝑟𝑒𝑛𝑒𝑡𝑖𝑐 𝑝 = 0.917
0.0166, 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒

𝐹𝑢𝑙𝑙 𝑝 < 0.01 𝑝 < 0.01
0.996, 𝑙𝑎𝑟𝑔𝑒 0.991, 𝑙𝑎𝑟𝑔𝑒

𝑅𝑆 𝑝 < 0.01 𝑝 < 0.01 𝑝 < 0.01
0.653, 𝑙𝑎𝑟𝑔𝑒 0.578, 𝑙𝑎𝑟𝑔𝑒 0.951, 𝑙𝑎𝑟𝑔𝑒

Fig. 24. The diversity of the revealed faults.

Table 14
Mann–Whitney test p value and Cliff’s delta for the fault sparsity.

𝐴𝑚𝑏𝑖𝑒𝐺𝑒𝑛 𝐹𝑟𝑒𝑛𝑒𝑡𝑖𝑐 𝐹𝑢𝑙𝑙 𝑅𝑆

𝐴𝑚𝑏𝑖𝑒𝐺𝑒𝑛

𝐹𝑟𝑒𝑛𝑒𝑡𝑖𝑐 𝑝 = 0.897
0.020, 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒

𝐹𝑢𝑙𝑙 𝑝 = 0.0889 𝑝 = 0.0998
0.3238, 𝑠𝑚𝑎𝑙𝑙 0.315, 𝑠𝑚𝑎𝑙𝑙

𝑅𝑆 𝑝 = 0.912 𝑝 = 0.794 𝑝 = 0.147
0.018, 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 0.042, 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 0.285, 𝑠𝑚𝑎𝑙𝑙

cases Fig. 25. The corresponding statistical test and effect size measures
(Cliff’s delta) are shown in the Tables 13, 14 and 15.

In terms of the number of the revealed faults both, AmbieGen and
Frenetic, statistically outperform the random search and the full model
based search. Out of 30 runs, on average, AmbieGen and Frenetic
produce almost equal amount of faults, i.e., 14.

Concerning the diversity of the revealed faults, all the approaches
have similar performance and do not show a statistically significant
difference.

Another important factor was the proportion of valid test cases
out of all the cases produced. From Table 15 we see that AmbieGen
produces a statistically larger proportion of the valid test cases, than
Frenetic and random search. For the full model, the invalid scenarios
were assigned the fitness value of 0 and not submitted for evaluation.
In Table 16 we also indicate the average number of the total produced
14
Fig. 25. The proportion of the valid test cases.

Table 15
Mann–Whitney test p value and Cliff’s delta for the proportion of valid cases.

𝐴𝑚𝑏𝑖𝑒𝐺𝑒𝑛 𝐹𝑟𝑒𝑛𝑒𝑡𝑖𝑐 𝑅𝑆

𝐴𝑚𝑏𝑖𝑒𝐺𝑒𝑛

𝐹𝑟𝑒𝑛𝑒𝑡𝑖𝑐 𝑝 < 0.01
1, 𝑙𝑎𝑟𝑔𝑒

𝑅𝑆 𝑝 < 0.01 𝑝 = 0.011
0.997, 𝑙𝑎𝑟𝑔𝑒 0.386, 𝑚𝑒𝑑𝑖𝑢𝑚

Table 16
Number of total, valid and invalid test cases.

𝑇𝐶𝑠 𝑉 𝑎𝑙𝑖𝑑 𝐼𝑛𝑣𝑎𝑙𝑖𝑑

𝐴𝑚𝑏𝑖𝑒𝐺𝑒𝑛 150 137.8 12.23
𝐹𝑟𝑒𝑛𝑒𝑡𝑖𝑐 190.3 136.46 53.83
𝑅𝑆 86.53 65.32 21.21

test cases as well as the number of invalid and valid test cases. For the
full number, initially the 25 individuals were produced that were later
evolved by the search operators. SBST2021 code pipeline evaluates the
test cases procedurally, i.e., as soon as the valid test case is produced
it is executed. The new test case can only be produced, when the exe-
cution of the previous one stops. The scenario execution time depends
on the generated road length, i.e., the longer the road, the more time
the car will spend in the simulation. Therefore, we do not evaluate the
approaches by the total number of the produced scenarios, as it depends
not only on the efficiency of the algorithm, but also on the duration of
the generated scenarios. The random search generates the lowest num-
ber of solutions as it only provides one solution after 5090 evaluations.
AmbieGen, on the contrary, provides around 7 solutions on average,
corresponding to the search Pareto front after 5090 evaluations.

AmbieGen reveals 9 failures in two hours, in comparison,
random search could reveal only 2 failures for the robot
case study. Both AmbieGen and state of the art Frenetic tool
revealed 14 failures in two hours. The revealed faults have
similarly high diversity for both tools. AmbieGen outperforms
Frenetic in the proportion of the valid generated scenarios.
AmbieGen also outperforms the random search and the full
model configuration in the number of revealed faults.

7. Discussion

In this section we discuss the implications of our findings for re-
search and the practice.

Evolutionary algorithms for scenario generation. Evolutionary algo-
rithms were proven to be effective, comparing to random generation, to
create virtual environments for testing automotive systems in previous
works such as [2,5,14]. The implementation of such algorithms to

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.

a
t
e
o
t

w
e
t
f
c
t
d
d
b
h
b
i
s
i

o
g
a
a
s
c
o
b
c

9

g
s
m
t
s

generate environments is rather challenging as the customized solution
representation and search operators need to be developed.

In our work we extend the application of evolutionary search for en-
vironment generation to such domains as smart-homes and autonomous
robots . This work is the first stage in designing a framework for
generating virtual environments, AmbieGen. We consider the complete
virtual environment to be composed of separate elements. Each element
is described with a fixed number of attributes. During the search
we recombine the elements as well as their attributes. One of the
advantages of such representation is the simplicity of implementation of
initial population generation, crossover and mutation search operators.
Therefore the developer only needs to consider a high level description
of the problem and not concentrate on the design of search operators
and solution representation. By adding more attributes, the scenario
complexity can be increased. For the smart-thermostat, for example,
we can add such attributes as the humidity inside the room and
temperature outside the room for each time period. For the autonomous
robot — the terrain type and indicate the presence of other robots.
For the car, for each road section we can indicate the terrain type, the
incline, the location of other vehicles, etc.

Overall, our study confirms the effectiveness of search based ap-
proaches for environment generation. Our framework is aimed to re-
duce the effort of the developers of evolutionary algorithms to test
the autonomous CPS. We provide the structure of the solution repre-
sentation and search operators, which can be applied to generation of
different types of environments. We provide examples of generating
smart-thermostat schedules, maps with obstacles and virtual roads with
search algorithm implementation based on Pymoo framework.

Using simplified system models. We explore the possibility to
use the approximated system models, rather than the full models to
compute the fitness function. Evidently, full models can detect failures
with a higher precision, however they are more expensive to execute
in terms of resources and time budget. For instance, the recommended
requirements for running BeamNG simulator are 16 GB RAM, Nvidia

GeForce GTX 970 videocard and Intel Core i7-6700 3.4 GHz proces-
sor or better. Our evaluations have shown that the full model failures
can be detected by an approximated model. Moreover, given the same
time budget the search guided by the approximated model may reveal
more faults, than when guided by the full model. We advocate for
the development of more precise simplified CPS models and making
them open source, so that they can be easily used by researchers
to calculate the search fitness functions. The possibility to use the
surrogate models was first suggested by [7], however it was used only
to generate the CPS inputs. In [2] the approximated models were used
to generate the environments, however no comparison with the full
model configuration was provided.

Challenges. The challenging part of AmbieGen implementation is
in evaluating the test scenario fitness. It consists of two stages: the first
is to convert the high level description matrix 𝑇𝐶 to the environment
configuration. For the smart thermostat we needed to convert the 𝑇𝐶
matrix to the list of temperatures to follow, for an autonomous robot
— to the coordinates of obstacles in a map, which was rather simple.
For the LKAS case study we needed to transform the 𝑇𝐶 matrix to a
set of 2D coordinates, that will produce valid roads after cubic spline
approximation. This conversion was more complex and we developed
a new technique leveraging affine transformations to vectors. Next
challenge was to create an approximated model. For the autonomous
robot we used an implementation provided by the Python Robotics
project. For the LKAS, we implemented the model from scratch. The
available open source implementations were rather time consuming
to execute. We also created the model from the real data for the
thermostat case study as we did not find any open source full models.

Finally, it was challenging to find baselines and pipelines to evaluate
the produced scenarios. For the autonomous robot, we implemented a
simple test evaluation pipeline, based on the Player/Stage simulator.
15

More advanced simulators require the manual creation of the scenarios a
in the 3D design tools. Fortunately, for the LKAS case study we could
use the test evaluation pipeline provided by the SBST2021 competition.

In conclusion, we advocate for the creation of open source approx-
imated and full models of CPS. Moreover, it is important to establish
more test evaluation pipelines and baselines, similar to the LKAS system
for other domains of CPS. Finally, we surmise that the CPS simulators
should provide a possibility to create environment from configuration
files or an API to automate the design of environments.

8. Threats to validity

We now discuss potential threats to the validity of the results of our
study, following existing guidelines [43].

Internal validity. To minimize the threats to internal validity,
relating to experimental errors and biases, whenever available, we
used standardized frameworks for development and evaluation. We
implemented all the evolutionary search algorithms (GA and NSGA-II)
using a standard Python Pymoo framework. To evaluate the scenarios
for the LKAS case study we used a standardized test pipeline used
for SBST2021 workshop tool competition. For the autonomous robot
case study we created a customized test evaluation pipeline, which is
based on the open source Player/Stage robotic simulator. It provides
implementations of the widely used robotic models, such as Pioneer
3-AT, and planning algorithms. This simulator was previously used by
researchers to conduct similar evaluations, as in [15].

Conclusion validity. Conclusion validity is related to random vari-
tions and inappropriate use of statistics. To mitigate it, we followed
he guidelines in [44] for search-based algorithm evaluation. We ran
ach evaluation at least 30 times and ensured the statistical significance
f the results by using a two-tailed non-parametric Mann–Whitney U
est and Cliff’s delta.
Construct validity. Construct validity is related to the degree to

hich an evaluation measures what it claims. To compare the test gen-
ration algorithms we gave the same time budget to all the algorithms
o produce the solutions. For all the algorithms we evaluated the best
itness found, accounting for the scenario fault revealing power. To
ompare the tools in terms of number of revealed faults we gave each
ool the same time budget to produce the scenarios. To measure the
iversity of the test scenarios we used a standard metric such as Jaccard
istance, previously used in other studies to compare the difference
etween the test cases. The exact implementation of this metric is,
owever, case study specific and thus can introduce some additional
ias. Furthermore, the results produced by AmbieGen depend on the
mplementation of the approximated model. Presumably, higher quality
urrogate models can produce more failures of the full model and
mprove the AmbieGen performance.
External validity. External validity relates to generalizability of

ur results. We demonstrated how our framework can be applied to
enerate environments for three different autonomous cyber–physical
gents. However, we only considered a limited number of test subjects
nd limited levels of environment complexity. Therefore more problems
hould be addressed with different agents and higher environment
omplexity to make definitive conclusions about the generalizability
f AmbieGen. Nonetheless, our evaluations demonstrated that Am-
ieGen was effective in revealing unwanted behaviours for all the three
onsidered autonomous CPS agents.

. Conclusions and future work

In this paper we presented the design of AmbieGen, a framework for
enerating virtual environments for testing autonomous cyber–physical
ystems. It leverages evolutionary search guided by the approximated
odel of system. We applied it to generating scenarios for the smart-

hermostat, autonomous robotic system, and vehicle lane keeping assist
ystem. Given the same time budget, AmbieGen could generate on

verage 40%–50% fitter solutions, than random search. Moreover,

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.
AmbieGen was effective at detecting faults of the full model. In two
hours it could find 9 failures of the Pioneer 3-AT mobile robot in
the Player/Stage simulator, comparing to only two failures found by
random search. For the full model of the vehicle, equipped with lane
keeping assist system, AmbieGen found 14 failures on average, the
same as the state of the art baseline — Frenetic. Random search only
found 8 failures on average. AmbieGen outperformed Frenetic in the
number of valid generated scenarios with a large effect size.

Comparing the two proposed configurations of AmbieGen, the sin-
gle objective (AmbieGen SO) and multi objective (AmbieGen MO),
AmbieGen SO may find fitter solutions than AmbieGen MO given the
same time budget. In two hours, for the autonomous robot case study,
AmbieGen SO found 10% fitter solutions than AmbieGen MO. For the
other case studies the difference in the best found solutions fitness
was insignificant. Overall, we recommend using the multi objective
configuration of AmbieGen, AmbieGen MO, as it always produced a
more diverse set of solutions with medium to large effect size and on
average could find almost as fit solutions as AmbieGen SO.

We plan to continue the research in four directions. First is cre-
ating more complex environments, taking into account the weather,
environmental conditions, and the moving obstacles such as other
robots or cars. We also plan to expand the scenario generation to other
CPS, such as drone and robot swarms. Secondly, we will explore the
possibility to create more precise simplified models using the system
identification techniques, including neural networks and NARIMAX
models. Thirdly, it is important to have the pipelines for evaluating
the generated scenarios. We plan to improve our evaluation pipeline
for autonomous robots by using more sophisticated simulators such as
Argos and Gazebo and more complex models of robots. We will also
work on developing evaluation pipelines dedicated to other types of
CPS. Finally, we plan to implement AmbieGen as a python framework
with an API for generating virtual environments and make it open
source.

CRediT authorship contribution statement

Dmytro Humeniuk: Experiments, Software, Writing – original draft,
Writing – review & editing. Foutse Khomh: Supervision, Writing –
review & editing. Giuliano Antoniol: Supervision, Writing – review
& editing.

Declaration of competing interest

No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict
with this work. For full disclosure statements refer to https://doi.org/
10.1016/j.infsof.2022.106936.

Acknowledgements

This work is funded by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) [Grant No: RGPIN-2019-06956] and
the Canadian Institute for Advanced Research (CIFAR).

References

[1] A. Aerts, M. Reniers, M.R. Mousavi, Model-based testing of cyber-physical
systems, in: Cyber-Physical Systems, Elsevier, 2017, pp. 287–304.

[2] R. Ben Abdessalem, S. Nejati, L.C. Briand, T. Stifter, Testing advanced driver
assistance systems using multi-objective search and neural networks, in: Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, 2016, pp. 63–74.

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,
MIT Press, 2009.

[4] N. Sturtevant, Benchmarks for grid-based pathfinding, Trans. Comput. Intell. AI
Games 4 (2) (2012) 144–148, URL http://web.cs.du.edu/~sturtevant/papers/
benchmarks.pdf.
16
[5] A. Gambi, M. Mueller, G. Fraser, Automatically testing self-driving cars with
search-based procedural content generation, in: Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, 2019, pp.
318–328.

[6] V. Riccio, P. Tonella, Model-based exploration of the frontier of behaviours for
deep learning system testing, in: Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 876–888.

[7] C. Menghi, S. Nejati, L. Briand, Y.I. Parache, Approximation-refinement testing
of compute-intensive cyber-physical models: An approach based on system
identification, in: 2020 IEEE/ACM 42nd International Conference on Software
Engineering, ICSE, IEEE, 2020, pp. 372–384.

[8] D. Humeniuk, F. Khomh, G. Antoniol, A search-based framework for automatic
generation of testing environments for cyber-physical systems, 2021, URL https:
//github.com/dgumenyuk/Environment_generation.git.

[9] M. Broy, B. Jonsson, J.P. Katoen, M. Leucker, A. Pretschner, Model-based testing
of reactive systems, in: Springer LNCS, vol. 3472, Springer, 2005.

[10] A. David, K.G. Larsen, A. Legay, M. Mikučionis, D.B. Poulsen, Uppaal SMC
tutorial, Int. J. Softw. Tools Technol. Transf. 17 (4) (2015) 397–415.

[11] Y. Annpureddy, C. Liu, G. Fainekos, S. Sankaranarayanan, S-taliro: A tool for
temporal logic falsification for hybrid systems, in: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, Springer,
2011, pp. 254–257.

[12] A. Donzé, Breach, a toolbox for verification and parameter synthesis of hybrid
systems, in: International Conference on Computer Aided Verification, Springer,
2010, pp. 167–170.

[13] A. Arrieta, S. Wang, U. Markiegi, G. Sagardui, L. Etxeberria, Search-based
test case generation for cyber-physical systems, in: 2017 IEEE Congress on
Evolutionary Computation, CEC, IEEE, 2017, pp. 688–697.

[14] V. Riccio, P. Tonella, Model-based exploration of the frontier of behaviours
for deep learning system testing, in: Proceedings of the ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, in: ESEC/FSE ’20, Association for Computing Machinery, 2020, p.
13, http://dx.doi.org/10.1145/3368089.3409730.

[15] J. Arnold, R. Alexander, Testing autonomous robot control software using
procedural content generation, in: International Conference on Computer Safety,
Reliability, and Security, Springer, 2013, pp. 33–44.

[16] T. Sotiropoulos, G. Guiochet, I. Ingrand, W. Waeselynck, Virtual worlds for
testing robot navigation: A study on the difficulty level, in: 2016 12th European
Dependable Computing Conference, EDCC, IEEE, 2016, pp. 153–160.

[17] C.D. Nguyen, S. Miles, A. Perini, P. Tonella, M. Harman, M. Luck, Evolutionary
testing of autonomous software agents, Auton. Agents Multi-Agent Syst. 25 (2)
(2012) 260–283.

[18] R. Alur, Principles of Cyber-Physical Systems, MIT Press, 2015.
[19] A. Handa, R.A. Newcombe, A. Angeli, A.J. Davison, Real-time camera tracking:

When is high frame-rate best? in: European Conference on Computer Vision,
Springer, 2012, pp. 222–235.

[20] A. Sakai, D. Ingram, J. Dinius, K. Chawla, A. Raffin, A. Paques, Pythonrobotics:
A python code collection of robotics algorithms, 2018, arXiv:arXiv:1808.10703.

[21] J.B. Mouret, Novelty-based multiobjectivization, in: New Horizons in Evolution-
ary Robotics, Springer, 2011, pp. 139–154.

[22] R. Romijn, L. Özkan, S. Weiland, J. Ludlage, W. Marquardt, A grey-box modeling
approach for the reduction of nonlinear systems, J. Process Control 18 (9) (2008)
906–914.

[23] L. Ljung, T. Glad, Modeling of Dynamic Systems (BOOK), Prentice-Hall, 1994.
[24] C.A.C. Coello, G.B. Lamont, D.A. Van Veldhuizen, et al., Evolutionary Algorithms

for Solving Multi-Objective Problems, Vol. 5, Springer, 2007.
[25] R.B. Abdessalem, S. Nejati, L.C. Briand, T. Stifter, Testing vision-based con-

trol systems using learnable evolutionary algorithms, in: 2018 IEEE/ACM
40th International Conference on Software Engineering, ICSE, IEEE, 2018, pp.
1016–1026.

[26] J. Blank, K. Deb, Pymoo: Multi-objective optimization in python, IEEE Access 8
(2020) 89497–89509.

[27] H.G. Beyer, H.P. Schwefel, Evolution strategies–A comprehensive introduction,
Nat. Comput. 1 (1) (2002) 3–52.

[28] J. Minguez, L. Montano, Nearness diagram (ND) navigation: collision avoidance
in troublesome scenarios, IEEE Trans. Robot. Autom. 20 (1) (2004) 45–59,
http://dx.doi.org/10.1109/TRA.2003.820849.

[29] C. Zid, D. Humeniuk, F. Khomh, G. Antoniol, Double cycle hybrid testing
of hybrid distributed IoT system, in: Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, Association for
Computing Machinery, New York, NY, USA, 2020, pp. 529–532, http://dx.doi.
org/10.1145/3387940.3392218.

[30] R. Winterton, Newton’s law of cooling, Contemp. Phys. 40 (3) (1999) 205–212.
[31] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for

Python, 2001–, URL https://docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.curve_fit.html.

[32] M. Kranz, R.B. Rusu, A. Maldonado, M. Beetz, A. Schmidt, A player/stage system
for context-aware intelligent environments, Proc. UbiSys 6 (8) (2006) 17–21.

https://doi.org/10.1016/j.infsof.2022.106936
https://doi.org/10.1016/j.infsof.2022.106936
https://doi.org/10.1016/j.infsof.2022.106936
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb1
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb1
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb1
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb2
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb2
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb2
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb2
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb2
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb2
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb2
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb3
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb3
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb3
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb5
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb5
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb5
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb5
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb5
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb5
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb5
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb6
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb6
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb6
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb6
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb6
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb6
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb6
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb7
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb7
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb7
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb7
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb7
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb7
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb7
https://github.com/dgumenyuk/Environment_generation.git
https://github.com/dgumenyuk/Environment_generation.git
https://github.com/dgumenyuk/Environment_generation.git
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb9
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb9
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb9
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb10
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb10
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb10
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb11
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb11
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb11
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb11
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb11
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb11
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb11
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb12
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb12
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb12
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb12
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb12
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb13
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb13
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb13
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb13
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb13
http://dx.doi.org/10.1145/3368089.3409730
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb15
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb15
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb15
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb15
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb15
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb16
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb16
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb16
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb16
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb16
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb17
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb17
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb17
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb17
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb17
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb18
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb19
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb19
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb19
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb19
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb19
http://arxiv.org/abs/arXiv:1808.10703
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb21
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb21
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb21
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb22
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb22
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb22
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb22
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb22
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb23
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb24
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb24
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb24
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb25
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb25
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb25
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb25
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb25
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb25
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb25
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb26
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb26
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb26
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb27
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb27
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb27
http://dx.doi.org/10.1109/TRA.2003.820849
http://dx.doi.org/10.1145/3387940.3392218
http://dx.doi.org/10.1145/3387940.3392218
http://dx.doi.org/10.1145/3387940.3392218
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb30
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb32
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb32
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb32

Information and Software Technology 149 (2022) 106936D. Humeniuk et al.
[33] V.S. Varadharajan, D. St-Onge, B. Adams, G. Beltrame, Swarm relays: Distributed
self-healing ground-and-air connectivity chains, IEEE Robot. Autom. Lett. 5 (4)
(2020) 5347–5354.

[34] S. Panichella, A. Gambi, F. Zampetti, V. Riccio, SBST tool competition 2021, in:
In International Conference on Software Engineering, Workshops, Madrid, Spain,
ACM, 2021.

[35] BeamNG.tech, Beamng gmbh., 2021, URL https://www.beamng.gmbh/research.
[36] C. Chen, A. Seff, A. Kornhauser, J. Xiao, Deepdriving: Learning affordance for

direct perception in autonomous driving, in: 2015 IEEE International Conference
on Computer Vision, ICCV, 2015, pp. 2722–2730, http://dx.doi.org/10.1109/
ICCV.2015.312.

[37] J.P. Laumond, S. Sekhavat, F. Lamiraux, Guidelines in nonholonomic motion
planning for mobile robots, in: Robot Motion Planning and Control, Springer,
1998, pp. 1–53.

[38] G.M. Hoffmann, C.J. Tomlin, M. Montemerlo, S. Thrun, Autonomous automobile
trajectory tracking for off-road driving: Controller design, experimental validation
and racing, in: 2007 American Control Conference, IEEE, 2007, pp. 2296–2301.
17
[39] F. Klück, L. Klampfl, F. Wotawa, Automatic generation of challenging road
networks for ALKS testing based on Bezier curves and search, 2021, arXiv
preprint arXiv:2103.01288.

[40] D. Humeniuk, G. Antoniol, F. Khomh, SWAT tool at the SBST 2021 tool
competition, in: International Conference on Software Engineering, Workshops,
Madrid, Spain, ACM, 2021, URL https://sbst21.github.io/program/papers/SWAT_
tool_at_SBST.pdf.

[41] E.D. De Jong, R.A. Watson, J.B. Pollack, Reducing bloat and promoting diversity
using multi-objective methods, in: Proceedings of the 3rd Annual Conference on
Genetic and Evolutionary Computation, 2001, pp. 11–18.

[42] E. Castellano, A. Cetinkaya, C. Ho Thanh, S. Klivovits, X. Zhang, P. Arcaini,
Frenetic at the SBST 2021 tool competition, in: International Conference on
Software Engineering, Workshops, Madrid, Spain, 2021, URL https://github.com/
ERATOMMSD/frenetic-sbst21/blob/main/src/frenetic-sbst21-preprint.pdf.

[43] R.K. Yin, Applications of Case Study Research Second Edition (Applied Social
Research Methods Series Volume 34), Sage Publications, Inc, 2002.

[44] A. Arcuri, L. Briand, A Hitchhiker’s guide to statistical tests for assessing
randomized algorithms in software engineering, Softw. Test. Verif. Reliab. 24
(3) (2014) 219–250.

http://refhub.elsevier.com/S0950-5849(22)00086-6/sb33
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb33
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb33
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb33
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb33
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb34
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb34
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb34
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb34
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb34
https://www.beamng.gmbh/research
http://dx.doi.org/10.1109/ICCV.2015.312
http://dx.doi.org/10.1109/ICCV.2015.312
http://dx.doi.org/10.1109/ICCV.2015.312
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb37
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb37
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb37
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb37
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb37
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb38
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb38
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb38
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb38
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb38
http://arxiv.org/abs/2103.01288
https://sbst21.github.io/program/papers/SWAT_tool_at_SBST.pdf
https://sbst21.github.io/program/papers/SWAT_tool_at_SBST.pdf
https://sbst21.github.io/program/papers/SWAT_tool_at_SBST.pdf
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb41
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb41
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb41
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb41
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb41
https://github.com/ERATOMMSD/frenetic-sbst21/blob/main/src/frenetic-sbst21-preprint.pdf
https://github.com/ERATOMMSD/frenetic-sbst21/blob/main/src/frenetic-sbst21-preprint.pdf
https://github.com/ERATOMMSD/frenetic-sbst21/blob/main/src/frenetic-sbst21-preprint.pdf
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb43
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb43
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb43
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb44
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb44
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb44
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb44
http://refhub.elsevier.com/S0950-5849(22)00086-6/sb44

	A search-based framework for automatic generation of testing environments for cyber–physical systems
	Introduction
	Related literature
	Problem formulation
	Scenario representation
	Search objectives definition

	Proposed approach description
	Test scenario generation case studies
	Wireless thermostat case study
	System under test description
	Problem representation
	Fitness function definition
	Genetic algorithm configuration
	Scenario generation

	Autonomous navigating robot case study
	System under test description
	Problem representation
	Fitness function definition
	Genetic algorithm configuration
	Scenario generation

	Lane keeping assist system case study
	System under test description
	Problem representation
	Fitness function definition
	Genetic algorithm configuration
	Scenario creation

	Experimental evaluation
	Research questions
	Results

	Discussion
	Threats to validity
	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

