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The approach in a nutshell
à Identification of symbolic closure models 

with Genetic Programming (GP)
• 1 particle 

• 2 particles (Paper 1)

• n particles (Paper 2)

à Requirements towards an equation:
• Accuracy

• Interpretability

• In-line with physical laws

à We address a subdomain of the problem 
(Stokes flow, Re = 0)

Numerical solvers are computationally 

limited to 𝛰(105) particles
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The approach in a nutshell
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numerical simulation

Graph Network (GN) as 
inductive bias

Symbolic Model 
discovered by GP

(1) GP is generally capable to identify physically meaningful models for the two-particle problem

𝑢% = 𝑢* + 𝑎'𝑢'(𝑥, 𝑦) + 𝑎%𝑢%(𝑥, 𝑦)

(2) GN as inductive bias facilitates to scale the problem to n particles
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Why is the result human-competitive?

The result is equal to or better than an result considered an achievement 

in fluid mechanics at the time it was first discovered (F) 

and is publishable on its own right (D).
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Competing with past achievements

Accuracy of equations for the two-particle 
problem, compared to SIP

2 particles, paper (1)

• GP algorithm outperforms the super-imposition method (SIP)

n particles, Paper (2)

• [3] introduces the pairwise interaction assumption in 2017

• In the Stokes regime, our equations are 

• on par with [3] in terms of accuracy 

• less complex than [3]

à Both papers (1) and (2) present novel equations
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Why is the result human-competitive?

The result is equal to or better than the

most recent human-created solution for the Stokes flow,

for which there has been a succession of human-created solutions (E).
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Our models fill the interpretability gap
• Simulating particle-laden flows is one of the oldest 

problems in the history of fluid mechanics [1] (1933)

• Most recent iterations since 2017 to solve the problem:

• Human-created correlations [3,5]

• Data-driven models [4,6-8] BlackBox GrayBox WhiteBox
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Our models fill the interpretability gap
• Equations published in paper (2) achive similar 

accuracies as the SotA approaches, but are less complex
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What makes our entry special?

0.000 3.142
µ

°1.00

°0.75

°0.50

°0.25

0.00

0.25

si
n

(µ
)
°

0.
45

36
8

°
0.

12
47

9
r

0.000 3.142
µ

°0.010

°0.005

0.000

0.005

0.
01

14
6r

+
0.

01
14

6
si

n
(µ

)
°

0.
01

42

0.25 0.50 0.75
r

0

2

4

6

y

° log(r)
1
r

exp°r

Paper (2): Plots of frequently appearing building blocks in the symbolic models

• Equations help to gain insights into the underlying particle interactions.

• Identified building blocks are a promising starting point to approach more complex flow regimes. 
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What makes our entry special?
• High requirements: 

• Accuracy

• Interpretability 

• In-line with physical laws

• Initially, the success of GP was strongly doubted

• Within the Stokes regime, our equations from (2) are not only 

human-competitive, but also ML-competitive

Strong constraints on the algorithms
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