
Discovering A�ention-Based Genetic Algorithms via
Meta-Black-Box Optimization

Robert Tjarko Lange*
Technical University Berlin

Tom Schaul, Yutian Chen
DeepMind

Chris Lu*†, Tom Zahavy‡
†University of Oxford, ‡DeepMind

Valentin Dalibard, Sebastian Flennerhag
DeepMind

Figure 1: Discovering attention-based Learned Genetic Algorithms (LGA) via MetaBBO. At each meta-iteration one samples a
set of inner loop tasks and a set of candidate LGA parameters from a meta-evolutionary optimizers (EO). Afterwards, one runs
an inner loop search and compute a normalized meta-�tness score across the tasks. We update the meta-EO and iterate.

ABSTRACT
Genetic algorithms constitute a family of black-box optimization
algorithms, which take inspiration from the principles of biological
evolution. While they provide a general-purpose tool for optimiza-
tion, their particular instantiations can be heuristic and motivated
by loose biological intuition. In this work we explore a fundamen-
tally di�erent approach: Given a su�ciently �exible parametriza-
tion of the genetic operators, we discover entirely new genetic
algorithms in a data-driven fashion. More speci�cally, we param-
etrize selection and mutation rate adaptation as cross- and self-
attention modules and use Meta-Black-Box-Optimization to evolve
their parameters on a set of diverse optimization tasks. The resulting
Learned Genetic Algorithm outperforms state-of-the-art adaptive

* Work done as interns at DeepMind. Contact: robert.t.lange@tu-berlin.de.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0119-1/23/07.
https://doi.org/10.1145/3583131.3590496

baseline genetic algorithms and generalizes far beyond its meta-
training settings. The learned algorithm can be applied to previously
unseen optimization problems, search dimensions & evaluation bud-
gets. We conduct extensive analysis of the discovered operators and
provide ablation experiments, which highlight the bene�ts of �exi-
ble module parametrization and the ability to transfer (‘plug-in’)
the learned operators to conventional genetic algorithms.

CCS CONCEPTS
• Computing methodologies → Genetic algorithms;

KEYWORDS
genetic algorithm, machine learning, meta-learning

ACM Reference Format:
Robert Tjarko Lange*, Tom Schaul, Yutian Chen, Chris Lu*†, Tom Zahavy‡,
and Valentin Dalibard, Sebastian Flennerhag. 2023. Discovering Attention-
Based Genetic Algorithms via Meta-Black-Box Optimization. In Genetic
and Evolutionary Computation Conference (GECCO ’23), July 15–19, 2023,
Lisbon, Portugal. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3583131.3590496

https://doi.org/10.1145/3583131.3590496
https://doi.org/10.1145/3583131.3590496
https://doi.org/10.1145/3583131.3590496

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lange et al.

1 INTRODUCTION
Motivation. Genetic algorithms (GAs) provide a set of evolution-
inspired optimization algorithms, which are �exibly applicable to
black-box optimization (BBO) problems. They commonly rely on
human designed operators, which impose a restrictive and most
importantly subjective set of manual priors. This bears the risk of
domain over�tting and limited generalization capabilities. Based on
recent results in the discovery of attention-based Evolution Strate-
gies [25], we propose that these limitations can be overcome by
meta-learning e�ective GA operators from data. Thereby, the induc-
tive biases of the GA itself are indirectly encoded by its parametriza-
tion & can be discovered in an optimization-driven fashion, i.e. by
improving its meta-performance on a distribution of relevant tasks.
Approach. Inspired by the recent success of the Set Transformer
[27] architecture, we introduce neural network-based architectures
to substitute core genetic operators: Selection and mutation rate
adaptation are cast as dot-product attention modules, which can
�exibly be applied to problems with varying dimensions & popu-
lation sizes. The resulting family of genetic algorithms can imple-
ment di�erent operations based on the speci�c module weights. We
meta-evolve these weights on a set of representative optimization
problems using meta-black-box optimization (MetaBBO, [25]).
Results. We evaluate the performance and generalization capabili-
ties of the meta-trained Learned Genetic Algorithm (LGA). LGA is
capable of generalizing far beyond its meta-training distribution
and outperforms established baseline GAs on several BBO bench-
marks (BBOB) [2, 13] and neuroevolution problems. This includes
di�erent optimization functions, number of search dimensions and
population sizes. Furthermore, we analyze the discovered neural
network GA operators: The selection operator has learned an adap-
tive form of truncation, which maintains diversity and redundancy
among the parent population. The learned mutation rate adaption
operator, on the other hand, automatically scales the amount of
exploration in a task-dependent fashion. We investigate the impor-
tance of the meta-evolution task distribution: While it is possible
to meta-evolve e�ective LGAs on as little as �ve BBOB functions,
we show that LGAs can over�t their meta-training distribution and
one has to ensure su�cient meta-regularization for broad general-
ization. Trained LGAs are robust to their choice of hyperparameters
and the details of their meta-training procedure. Finally, we show
that the individual learned operators can replace white-box GA
operators inducing a positive transfer e�ect.
Contributions. Our contributions are summarized as follows:

(1) We propose a dot-product attention-based parametrization
of the selection & mutation rate adaptation GA operators.

(2) We discover new GAs by meta-evolving their parameters
based on the performance on meta-training BBO tasks.

(3) The resulting LGA is capable of generalizing far beyond its
meta-training settings and outperforms several GA baselines
on various benchmark tasks and evaluation budgets.

(4) We perform several ablations to LGA to assess the contri-
butions of learning the individual operator modules. Both
learned operators contribute to the overall performance.

(5) We highlight the robustness of the trained LGA to its hyper-
parameters, the transferability of the learned components
and the stability of the MetaBBO procedure.

2 RELATEDWORK
Discovery via Meta-Learned Algorithms. Recent e�orts have
proposed to replace manually designed algorithms by end-to-end
optimized inductive biases, by meta-learning parametrized compo-
nents on a representative task distribution. E.g. this includes the
discovery of Reinforcement Learning objectives [28, 33, 44], sched-
ules of algorithm hyperparameters via meta-gradients [9, 34, 45, 47],
and the meta-learning of entire learning algorithms [18, 19, 42]. The
discovery process can be supported by suitable neural network ar-
chitectures. Our proposed LGA architecture leverages attention
layers to derive a neural network-based family of GAs.
Meta-LearnedGradient-BasedOptimization. Ourwork is closely
related to the ambition of meta-learning gradient descent-based
learning rules [1, 3, 31]. These approaches rely on access to e�-
cient gradient calculations via the backpropagation algorithm and
thereby do not apply to BBO problems. A small neural network pro-
cesses the gradient and standard optimizer statistics (momentum,
etc.) to output a weight change. The optimizer network weights in
turn have been meta-learned on a task distribution [30]. Metz et al.
[29] showed that this results in a highly competitive optimizer for
deep learning tasks. Our MetaBBO-discovered LGA, on the other
hand, provides a general-purpose BBO, which does not require
di�erentiable objective functions.
Meta-Learned Population-Based Optimization. Shala et al. [38]
meta-learn a controller for the scalar mutation rate in CMA-ES
[15]. Chen et al. [5], Gomes et al. [12], TV et al. [41] previously
optimized entire neural network-parametrized algorithms for low-
dimensional BBO. All of them use a recurrent network, which pro-
cesses raw solution candidates and their respective �tness scores.
These methods often struggle to generalize to new optimization
domains and are often constrained to �xed population sizes and/or
search dimensions. Lange et al. [25] recently leveraged the equiv-
ariance property of dot-product self-attention to the input ordering
[20, 27, 39] to learn adaptive recombination weights for evolution
strategies. The proposed LGA extends this attention-based BBO
perspective in order to characterize GA operators. After successful
meta-training, the learned GA is capable of generalizing to unseen
populations and large search spaces. To the best of our knowledge
we are the �rst to demonstrate that a meta-learned GA generalizes
to challenging neuroevolution tasks. Finally, theMetaBBO approach
does not require access to knowledge of meta-task optima [41] or a
teacher algorithm [38].
Baseline Genetic Algorithms. Throughout the paper we compare
against four competitive baseline GAs including the following:

• Gaussian GA [35]: A simple GA with Gaussian perturbations
and �xed mutation strength using truncation selection.

• MR-1/5 GA [35]: Doubles the mutation rate if 1/5 of all per-
turbations were bene�cial. Otherwise, the rate is halved.

• SAMR-GA [7]: Self-adapts per-parent mutation rates based
on a simple co-evolution heuristic and meta-mutation rate.

• GESMR-GA [21]: Avoids vanishing mutation rates by using
a group elite selection criterion and mutation rate sharing.

We additionally consider Sep-CMA-ES [36] as a scalable evolution
strategy baseline for neuroevolution tasks. Each baseline GA was
tuned using small grid search sweeps (see Appendix B). Otherwise,
we adopted the settings provided by the authors.

Discovering A�ention-Based Genetic Algorithms via Meta-Black-Box Optimization GECCO ’23, July 15–19, 2023, Lisbon, Portugal

3 BACKGROUND
Black-Box Optimization. Throughout this manuscript, we are
interested in e�cient continuous black-box optimization: Given a
function 5 (G) : R⇡ ! R with unknown functional form, i.e. we
cannot compute its derivative, we seek to �nd its global optimum:

min
x
5 (x), s.t. x3 2 [;3 ,D3] ⇢ [�1,1],83 = 1, ...,⇡,

Genetic Algorithms. GAs provide a class of BBO algorithms,
which iteratively evaluate a population consisting of # solution
candidates -⇠ = [x⇠1 , . . . , x⇠#]

) 2 R#⇥⇡ (‘children’) with �tness
f⇠ 2 R# . Given a set of ⇢ ‘parent’ solutions -% = [x%1 , . . . , x%⇢]

) 2
R⇢⇥⇡ with associated �tness f% 2 R⇢ , the parents are replaced by
the children using a heuristic �tness-based selection criterion.
Most GAs make use of truncation selection in which all children
and parents [x⇠1 , . . . , x⇠# , x

%
1 , . . . , x

%
⇢]
) are jointly sorted by their

�tness. The top-⇢ performing solutions replace the parent archive:

-%
0
, f%

0
= Selection(-% , f% ,-⇠ , f⇠) .

Commonly the number of parents is set to be small ⇢ ⌧ # and often
even ⇢ = 1, enforcing a type of hill climbing. # children candidates
are uniformly sampled with replacement from the parents:

-̃% , f̃% = Sample(-% , f%) 2 R#⇥⇡ .
Afterwards, they are perturbed using a mutation rate (MR) f 2

R+, which controls the strength of the Gaussian noise, n 9 ⇠ N(0⇡ , I⇡).

-⇠9 = Mutation(-̃%9 ,f) = -̃%9 + fn 9 2 R⇡ , 89 = 1, ...,# .

Many competitive GAs keep a vector of parent-speci�c [7] mu-
tation rates 2% 2 R⇢ and additionally perform an intermediate mu-
tation rate adaptation (MRA) step to improve the mutation rate(s)
given information gathered throughout the �tness evaluations:

2% = Adaptation(f% ,2% , f⇠ ,2⇠) 2 R⇢ .
In this case, the children are perturbed by their sampled individual-
speci�c mutation rate (2⇠ 2̃% 2 R#) and selection also applies
to the children’s MR. Alternatively, GESMR-GA [21] forms parent
sub-groups and online co-evolves group-level mutation rates based
on their observed �tness improvements.
Set Operations via Dot-Product Self-Attention. Scaled dot-
product attention (SDPA) is especially well suited to characterize
algorithms performing set operations, since it naturally enforces a
permutation invariant function. Consider the standard formulation
of SDPA, which embeds a set of # input tokens, - 2 R#⇥⇡ , into
⇡ -dimensional latent query& , key and value+ representations:

& = -,& 2 R#⇥⇡ ,
 = -, 2 R#⇥⇡ ,
+ = -,+ 2 R#⇥⇡ .

The output . is computed as a linear combination of the values:

. = softmax
⇣
&) /

p
⇡

⌘
+ 2 R#⇥⇡ .

It can be shown that this transformation is equivariant to the or-
dering of the tokens in - , i.e. permuting the rows of - will apply
the same permutation to the rows of . [20, 39]. We will leverage
this suitable inductive bias to characterize GAs, which inherently
operate on sets of solution candidates and their �tness scores.

Figure 2: Learned Genetic Operators. Top: Cross-attention
selection between parent & children �tness features. Bottom:
MRA via self-attention on parentmutation&�tness features.

4 ATTENTION-BASED GENETIC OPERATORS
We now introduce an attention-based parametrization of the ge-
netic Selection and Adaptation operators (Figure 2). These in
turn will be meta-optimized on a set of representative optimization
tasks in order to capture useful BBO mechanisms. We start by an-
swering a natural question: What inputs should be processed by
the operators in order to enable generalization across �tness and
solution scales?
Attention Features via Fitness Scores &Mutation Strength. To
compute attention scores across parents and children, we need to
construct su�cient features, which modulate e�ective selection and
mutation rate adaptation. Furthermore, we want the meta-learned
operations to generalize across di�erent test optimization scales.
Hence, we consider scale invariant normalizations: E.g. z-scoring
and centered ranks (in [�0.5, 0.5]). We transform both the raw �t-
ness scores (⇡� dim.) and the parent mutation rates (⇡f dim.) to
construct a set of features processed by the attention layers:
(1) � 2 R(#+⇢)⇥⇡� : Joint �tness transformations of parents and
children (z-scores & centered ranks).
(2) �⇠ = �1:# 2 R#⇥⇡� : Fitness transformations of children ex-
tracted from joint transforms (z-scores & centered ranks).
(3) �% = �# :(#+⇢) 2 R⇢⇥⇡� : Fitness transformations of parents
extracted from joint transforms (z-scores & centered ranks). (4)
�%
0 2 R#⇥⇡� : (Separate) �tness transforms of sampled parents

after selection operation (z-scores & centered ranks).
(5) 2̂% 2 R#⇥⇡f : Mutation strength transformations of sampled
parents (z-scores & [-1, 1] normalization).
(6) �" = [�̃% , 2̂%] 2 R#⇥(⇡� +⇡f) : Concatenated �tness and muta-
tion rate features of sampled parents. The �tness features addition-
ally include a Boolean indicating whether an individual performs
better than the best �tness observed so far.
Selection via Cross-Attention. We replace the common sorting-
based selection mechanism with a cross-SDPA layer, which com-
pares children and parents. It �rst embeds the �tness transforma-
tions of the parents and children into queries, keys and values:

&% = �%,&% 2 R⇢⇥⇡ ,
 ⇠ = �⇠, ⇠ , +

⇠ = �⇠,+⇠ 2 R#⇥⇡ .

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lange et al.

Afterwards, we compute the normalized dot-product cross-attention
features �(and construct a selection matrix"(2 R⇢⇥(#+1) :

�(= softmax
✓
&% (⇠))p

⇡

◆
+⇠ 2 R⇢⇥⇡

&(= �(,&(2 R⇢⇥⇡: , (= �⇠, (2 R#⇥⇡

"(= softmax
✓ 
&((())p

⇡
, 1⇢

� ◆
2 R⇢⇥(#+1)

In the �nal line we concatenate an ⇢-dimensional vector of ones to
the outer product of &(and (. Intuitively, this column represents
a �xed o�set used to indicate whether the parent copies any child
at all or if it is not replaced. The rows of "(then specify the
probability of each o�spring to replace a parent:

"(= softmax
©≠≠≠≠
´

266666664

<11 <12 . . . <1# 1
<21 <22 . . . <2# 1
...

...
. . .

... 1
<⇢1 <⇢2 . . . <⇢# 1

377777775

™ÆÆÆÆ
¨

"(is row stochastic, i.e. the rows sum to 1. E.g."(
11 denotes the

probability of replacing parent 1 with child 1, while "(
1#+1 cor-

responds to not replacing the �rst parent. We sample row-wise
from a categorical distribution in order to determine whether a
child replaces a particular parent. Afterwards, we use the selection
matrix to update the parent archive (-%

0
) and �tness archive (f%

0
):

(⇠ Categorical("() with (2 R⇢⇥(#+1) ,

-%
0
= -⇠ · (:,1:# + -% · diag((:,# :#+1),

and similarly we obtain f%
0
and 2%

0
via masked addition. This

selection operator can �exibly regulate the amount of truncation
selection by replacing multiple parent slots with the same child.
Mutation Rate Adaptation (MRA) via Self-Attention. Next to
selection we meta-learn MRA. The concatenated �tness and MR
features of the sampled parents are processed by a SDPA layer,
which outputs a child-speci�c feature matrix �" 2 R#⇥⇡ :

 " = �", " , &
" = �",&" , +

" = �",+" 2 R#⇥⇡ ,

�" = softmax
✓
&" ("))p

⇡

◆
+" 2 R#⇥⇡ .

Afterwards, the multiplicative adaptation to the MR is constructed
by projecting and re-parametrizing the attention output:

�f = exp(0.5 ⇥�",f) 2 R#

The children MR 2⇠ is obtained via element-wise multiplication:

2⇠ = �f � 2%
0 2 R#

\ = {,&% ,, ⇠ ,,+⇠ ,,&(,, (,,&" ,, " ,,+" ,,f } denotes
the joint attention weights, which characterize a speci�c instance of
an LGA.We use a small feature dimension⇡ = 16, which results in
<1500 trainable meta-parameters. In summary, we introduced two
dot-product attention-based operators, which replace the standard
selection and MRA operations. Throughout the paper we focus on
learned selection and MRA, but in Appendix A we outline how
to additionally construct sampling and cross-over operators using
self-attention.

5 META-TRAINING, OBJECTIVE & TASKS
We meta-optimize the weights of the GA attention modules to per-
form BBO on a family of representative tasks. More speci�cally, we
make use of the previously introducedMetaBBO procedure [25] and
evolve the LGA parameters to maximize performance on a task dis-
tribution of 10 BBOB [13] functions. These include functions with
di�erent properties, i.e. separability, conditioning, multi-modality
(see Table 1). At each meta-generation (see Figure 1) we start by
uniformly sampling a set of BBO tasks and LGA parameters from
a meta-evolutionary optimization algorithm. We denote the set
of parameters characterizing the LGA by \8 for 8 = 1, ...," meta-
population members. Afterwards, each LGA is evaluated on all
tasks by running an inner loop search. We compute an aggregated
meta-performance score to update the meta-EO. The MetaBBO-

Algorithm 1 MetaBBO Training of Learned Genetic Algorithms
1: Inputs:Meta-population" , meta-task size � , inner loop popu-

lation size # , generations) , MetaEO (e.g. OpenAI-ES, [37]).
2: Initialize the meta-search distribution `, ⌃ = f<4C0� .
3: while not done do
4: Sample � BBO tasks with b; , 8; = 1, ..., � .
5: Sample LGA candidates: \8 ⇠ N(`, ⌃), 88 = 1, ...," .
6: Evaluate all" LGA candidates on the same tasks:
7: for ; = 1, ..., � do
8: for 8 = 1, ...," do
9: Initialize search and �tness archives -% ,2% , f% .
10: for C = 0, ...,) � 1 do
11: Sample: -̃% , f̃% , 2̃% Sample(-% , f% ,2%).
12: Perform MRA: 2⇠ Adaptation\8 (f̃% , 2̃%).
13: Mutate: -⇠ Mutation(-̃% ,2⇠).
14: Evaluate all children: 5 (-⇠9 |b;), 89 = 1, ...,# .
15: Update parent archive:
16: -%

0
, f%

0
,f%

0 Selection\8 (f⇠ , f%).
17: end for
18: end for
19: end for

20: Collect �tness scores

"  h
{5 (G⇠9,C |b;)}#9=1

i)
C=1

� �
;=1

|\8
#"
8=1

.

21: Compute normalized & aggregated meta-�tness { 5̄ (\8)}"8=1.
22: Update meta-search ` 0, ⌃0 MetaEO({\8 , 5̃ }"8=1 |`, ⌃).
23: end while

objective is computed based on the collected inner loop �tness
scores of each LGA instance, where b; denotes task-speci�c param-
eters for ; = 1, ..., � tasks. For each candidate \8 we minimize the
�nal performance of the best population member. Afterwards, we
I-score the task-speci�c results over meta-population members and
compute the median across tasks:h

[5 (\8 |b:)]"8=1
i
:=1

=

" 
min
9
{5 (G 9,) |b;)}#9=1 |\8

�"
8=1

�
;=1

{ 5̄ (\8)}"8=1 = Median

h
Z-Score

⇣
[5 (\8 |b:)]"8=1

⌘i
:=1

.

The outer loop optimizes \ using OpenAI-ES [37] for 750 meta-
generations with a meta-population size of " = 512. We sample

Discovering A�ention-Based Genetic Algorithms via Meta-Black-Box Optimization GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Figure 3: LGA MetaBBO. Meta-evaluation across meta-
generations. Evaluation of LGA on two 10 dim. BBOB (Top)
and neuroevolution tasks (Bottom). We report mean & 1.96
standard error intervals across 3 independent MetaBBO runs.

� = 256 tasks and evaluate each sampled LGA on each task in-
dependently. Each LGA is unrolled for) = 50 generations, with
= 16 population members in each iterations. Throughout, we
assume that ⇢ = # , i.e. the number of parents is equal to the num-
ber of children. This is not a limitation since the selection operator
is capable of replacing multiple parents with the same child (see
Section 7.1). The large-scale parallel meta-evaluation of all \8 on
all b 9 tasks is facilitated by the auto-vectorization and device paral-
lelism capabilities provided by the JAX library [4, 23] and runs on
multiple accelerators. We provide more details and experiments on
the meta-training settings and robustness in Appendix B.1 and C.

6 EXPERIMENTS
We now turn to an exhaustive experimental evaluation of the
MetaBBO optimization procedure and the discovered LGA. We
thereby set out to answer the following questions:

(1) Is it possible to meta-evolve competitive LGAs via MetaBBO
using a limited set of meta-training BBO tasks (Section 6.1)?

(2) Does the resulting LGA outperform GA baselines on unseen
BBO problems and di�erent search budgets (Section 6.2)?

(3) How much can an LGA discovered on a limited set of tasks
generalize beyond its meta-training setting (e.g. hyperpa-
rameter optimization & neuroevolution; Sections 6.3 & 6.4)?

6.1 Meta-Training on BBOB Functions
We start by meta-evolving the LGA parameters on a task distribu-
tion consisting of 10 BBOB functions with di�erent random optima
o�sets, evaluation noise and considered problem dimensionality
(⇡  10). Throughout meta-training we evaluate the performance
of the optimized LGA on several di�erent downstream tasks. These
include BBOB functions seen during meta-training, hold-out meta-
test BBOB functions and small neuroevolution tasks. In Figure 3
we plot the detailed evaluation curves across meta-training. The
MetaBBO-trained LGA quickly learns how to perform optimization

Figure 4: Meta-Evaluation on BBOB Tasks. Left: Training
Functions. Right: Hold-Out Functions. Scores are normalized
by the Gaussian GA baseline performance. Lower is better.
Results are averaged over 50 independent evaluation runs.

on the low-dimensional BBOB meta-training functions. Interest-
ingly, we �nd that the MetaBBO procedure can lead to an LGA that
over�ts to the BBOB tasks on which it was meta-trained. The down-
stream performance of LGA decreases and becomes unstable for
both an unseen Pendulum control task withMLP policy and a down-
sized 14-by-14 MNIST classi�cation task using a CNN.We therefore
investigated whether meta-regularization can improve the gener-
alization on such unseen neuroevolution tasks. More speci�cally,
we compared three di�erent meta-mean regulatization coe�cients
_ 2 {0, 0.005, 0.02}, which exponentially decay the meta-mean to
zero, ` 0_ = (1 � _)` 0. We observe that the generalization to the neu-
roevolution tasks can be improved and stabilized using a properly
chosen decay of 0.005. In Appendix C we further explore the impact
of the meta-task distribution, meta-objective and LGA attention
size. The MetaBBO procedure is largely robust to the choice of these
settings. Small attention layers are su�cient for consistently discov-
ering performant LGAs. This comes with the additional advantage
of reducing the FLOPs and memory requirements of executing the
LGA. The evaluation of a meta-trained LGA is easily feasible on a
single core CPU device.

6.2 Meta-Testing on BBOB Functions
Next, we exhaustively evaluate the performance of LGA on the
full set of BBOB benchmark functions including test functions un-
seen during meta-training. We compare against 4 competitive GA
baselines: Gaussian GA, MR-1/5 GA, SAMR-GA, GESMR-GA.1 We
compare the performance on all BBOB functions for a population
size of # = 32, ⇡ = 20 search dimensions and for) = 50 genera-
tions. The best-across generations function value is normalized by
the performance of the Gaussian GA. In Figure 4 we �nd that LGA
outperforms all baselines on the majority of both BBOB functions
seen during meta-training (left) and unseen BBOB functions (right).
This holds true for functions with very di�erent characteristics
(single/multi-modal, high/low conditioning, separable/not separa-
ble), search dimensions and population sizes (Appendix Figure 17
& 18). This provides further evidence that LGA does in fact not
1All baselines were tuned using grid searches over the parent archive size and initial
mutation rate scale. We report all BBOB evaluation & tuning settings in Appendix B.2.

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lange et al.

Figure 5: LGA Generalization. Left: BBOB evaluation for dif-
ferent budgets & search spaces. Right: Performance across
generations. We report mean & 1.96 standard error intervals
across 50 runs.

over�t to the BBO functions seen during meta-training, but instead
has discovered a general-purpose GA algorithm. In Figure 5 we
further demonstrate that LGA generalizes to di�erent population
sizes and problem dimensions. The meta-learned GA achieves lower
function values in fewer generations (right) and performs well for
di�erent problem settings (left). As the problems become harder
with increased dimensionality, LGA can compensate with a larger
population size.

6.3 Meta-Testing on Continuous HPO-B
Next, we test LGA’s performance on the HPO-B benchmark [2]. The
benchmark considers a vast array of hyperparameter optimization
tasks including 16 di�erent model types (SVM, XGBoost, etc.) and
their respective search spaces (⇡ 2 {2, 3, . . . , 16}). Each model is
evaluated on 2 to 7 di�erent datasets, which leads to a total of 86
hyperparameter search tasks. We consider the continuous HPO-B
version, which uses a previously �tted surrogate model. Note that
the LGA has not been trained on such hyperparameter optimiza-
tion tasks. Figure 6 compares the performance of LGA against the
GA and a random search baselines. Additionally, we report the
reference performance of the recently proposed OptFormer model
[6] after 105 total evaluations. We �nd that LGA outperforms the
majority of considered GA baselines. Again, this observation holds
for two considered population sizes. LGA can also achieve similar
performance as OptFormer, which has been trained on a much
more diverse task distribution. This highlights the transfer capabil-
ities and applicability of LGA to new during meta-training unseen
optimization domains.

Figure 6: LGA Evaluation on HPO-B [2]. Left: Small popu-
lation size (# = 4). Right: Large population size (# = 8). We
report mean & 1.96 standard error intervals across 5 runs.

6.4 Meta-Testing on Neuroevolution Tasks
Until now we have evaluated the performance of the discovered
LGA on moderately small search spaces (i.e. ⇡  20). But is it also
possible to deploy LGA to neuroevolution settings with thousands
of search dimensions and arguably very di�erent �tness landscape
characteristics? Again, note that LGA has never explicitly been
trained to evolve such high-dimensional genomes and that this
requires strong transfer of the learned GA operators.

The considered Reinforcement Learning (RL) tasks consist of
4 robotic control tasks (Pendulum-v1 [24] and 5 Brax tasks [10])
using MLP policies and three MinAtar visual control tasks (SpaceIn-
vaders, Breakout & Asterix [46]) with CNN-based policies. TheMLP
genomes consist of less than 1000 weights, while the MinAtar CNNs
have ca. 50,000. Hence, the search space is many orders higher than
what the LGA has been meta-trained on (⇡  10). The top three
rows of Figure 7 show that LGA can compete with all tuned base-
line GAs on the nine RL tasks with di�erent search spaces, �tness
landscapes and evaluation budgets. Interestingly, the performance
gap between LGA and the considered baselines is the biggest for
the CNN policies and tends to increase with the number of search
dimensions. Finally, in the �nal row of Figure 7 we show that
LGA can also successfully be applied to three image classi�cation
tasks including MNIST, Fashion-MNIST and K-MNIST classi�ca-
tion (28-by-28 grayscale images) with a small CNN (2 convolutional
layers, ReLU activation and a linear readout) with 11274 evolvable
weights. The LGA generalizes far beyond the meta-training search
horizon() = 50 versus 4000) and does not meta-over�t [26].

7 ANALYSIS OF DISCOVERED LGA
After having established that the meta-trained LGA is capable of
outperforming a set of GA baselines on unseen optimization prob-
lems, we now investigate the underlying discovered mechanisms,
transfer ability and robustness of the meta-learned GA operators.

7.1 Visualization of Learned Genetic Operators
What types of mechanisms underlying the black-box genetic opera-
tors has LGA discovered? Has it simply re-discovered �tness-based
truncation selection or a more complex parent replacement proce-
dure? In Figure 8 we consider a 2-dim Sphere problem and visualize
the selection mask (:,1:# used to update the parent archive -% . We
observe that the selection operator uses children solution to replace
parents based on their improvement over the best seen solution.

Discovering A�ention-Based Genetic Algorithms via Meta-Black-Box Optimization GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Furthermore, one well-performing child often times replaces more
than a single parent. This indirectly implies that the selection op-
erator has meta-learned to dynamically adapt its elite archive size
and thereby also the e�ective sampling distribution. A child that
has replaced multiple parents will be sampled (with replacement)
more frequently in the next generation. Furthermore, this implies a
robustness mechanism: Since children can be stored multiple times
in the parent archive, they are less likely to be ‘forgotten’ by the
stochastic selection. The mutation rates, on the other hand, are
decreased over the course of generations in order to explore closer
to the global optimum. Furthermore, we observe a grouping of the
MR based on the performance of the parents. Children with bad
performing parents tend to exhibit a higher mutation rate.

Figure 7: LGA Evaluation on neuroevolution tasks includ-
ing continuous control tasks (top), visual control (middle)
& computer vision (bottom) tasks. We report mean & 1.96
standard error intervals across 5 independent runs.

7.2 Ablation & Transfer of Genetic Operators
How much do the di�erent learned components contribute to the
overall performance of LGA? Can the learned modules act as drop-
in replacements for other genetic algorithms? To answer this ques-
tion we consider two types of comparative studies:

(1) Operator ablation before MetaBBO discovery: We meta-
train the LGA with a variable amount of learned genetic
operators. E.g. we �x the selection operator to white-box

Figure 8: LGA’s selection operator on a 2-dim Sphere task.
Left: Sampled selection matrix (:,1:# 2 R⇢⇥# Middle: Matrix
indicating whether a child improves the �tness score over the
parents. Right: Mutation rates for di�erent children. Rows
indicate 4 di�erent generations C 2 {1, 16, 31, 46}.

truncation selection and only meta-learn mutation rate adap-
tation. This allows us to quantify the joint contributions and
synergies between the di�erent learned ingredients.

(2) Operator transfer after MetaBBO discovery: After meta-
training is completed, we ask whether or not it is possible
to substitute the learned operators into other genetic algo-
rithms? This in turn allows us to assess whether the speci�c
learned operator is over�t to the downstream GA computa-
tions or whether it can act as a transferable inductive bias
for genetic computation.

For the �rst study we compare meta-training combinations of
attention-parametrized selection (SE), mutation rate adaptation
(MRA), cross-over (CO) and sampling (SA).2 For each combination
we plot the evaluation performance across meta-generations in
Figure 9. We observe that MRA is crucial for good performance
on the neuroevolution tasks. Intuitively, this can be explained by
the smaller scale of solution parameters associated with neural
network weights. The GA bene�ts from the ability to �exibly down-
regulate its perturbation strengths. Cross-over, on the other hand,
is detrimental for the generalization of LGA to the MNIST CNN

2CO and SA parametrizations are additionally introduced in Appendix A. Throughout
the main text we mainly focused on learned mutation rate adaptation and selection.

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lange et al.

neuroevolution task. This behavior can arguably be attributed to
the challenge of �nding bene�cial crossing over pairs for di�erent
neural network genomes. We further observed that learned sam-
pling does not signi�cantly improve the performance of the LGA.
We hypothesize that this is due to the indirect e�ect of the selection
mechanism on the sampling of children. Finally, the overall best
performing con�guration only meta-learns selection and MRA.

Figure 9: Visualization of LGA’s operator ablations during
MetaBBO. Evaluation of LGA on two 10 dim. BBOB (Top)
and neuroevolution tasks (Bottom). We report mean & 1.96
standard error intervals across 3 independent MetaBBO runs.

Next, we considered replacing the truncation selection and �xed
mutation rate of the Gaussian GA baseline with the learned se-
lection and MRA operators. In Figure 10 we show that this can
successfully be accomplished for four neuroevolution tasks. Replac-
ing either the selection or adding learned MRA operator improves
the performance of the Gaussian GA. The learned operators can
act as drop-in replacements and are transferable inductive biases.

Figure 10: Transfer of learned operators to a Gaussian GA.
We report mean & 1.96 standard error intervals across 5 runs.

7.3 Hyperparameter Robustness of LGA
Finally, we assess the sensitivity of LGA to its remaining hyperpa-
rameter choices. More speci�cally, we compare the performance of
LGA and the baseline GAs for various initial mutation rate scales f0
and parent archive sizes ⇢ = dd ⇥ # e, where d denotes the fraction
of population members making up the number of parents. Note
that while LGA was meta-trained for d = 1, i.e. ⇢ = # , we �nd
that it is capable of generalizing to many di�erent archive sizes
and is robust to the initial scale parameters (Pendulum control task;
see Figure 11). In Section D.2 we provide the same analysis for all
neuroevolution tasks. LGA is far less hyperparameter sensitive than
the considered baseline GAs. This highlights the robustness of the
LGA induced by the MetaBBO process.

Figure 11: Hyperparameter Robustness of LGA. Pendulum-
v1 performance across elite ratios and initial mutation rates.
d = 0 uses a single parent ⇢ = 1. Results are averaged over 5
independent evaluation runs.

8 CONCLUSION
Summary. In this study, we used evolutionary optimization to dis-
cover novel genetic algorithms via meta-learning. We leveraged the
insight that GA operators perform set operations and parametrized
them with novel attention modules that induce the inductive bias of
permutation equivariance. Our benchmark results on BBOB, HPO-
B and neuroevolution tasks highlight the potential of combining
�exible GA parametrization with data-driven meta-evolution.
Limitations. We use powerful neural network layers to character-
ize GA operators. While �exible and interpretable (Section 7.1), the
underlying mechanisms do remain partially opaque. Future work
needs to be done in order to fully reverse-engineer the discovered
operators. In Appendix E we provide a �rst set of insights unravel-
ing simple linear relationships between the attention inputs and
their outputs. We believe these can guide the design of new ‘white-
box’ GAs informed by ‘grey-box‘ discovered LGAs. Furthermore,
our analysis highlights the importance of meta-regularization and
the potential for the automated design of meta-training curricula.
Future Work. We are interested in explicitly regularizing LGAs
to maintain diversity in their parent archive. This may provide a
bridge to meta-learned quality-diversity methods [8]. Furthermore,
it may be possible to parametrize a �exible EO algorithm that can
interpolate between the exploration of multiple solution candidates
as in GA and a single search distribution mode as in traditional
evolution strategies. Finally, we believe that better meta-learned
GAs can be discovered by simultaneously co-evolving the meta-task
distribution and the learned GA.

Discovering A�ention-Based Genetic Algorithms via Meta-Black-Box Optimization GECCO ’23, July 15–19, 2023, Lisbon, Portugal

REFERENCES
[1] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Ho�man, David

Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. 2016. Learning
to learn by gradient descent by gradient descent. Advances in neural information
processing systems 29 (2016).

[2] Sebastian Pineda Arango, Hadi S Jomaa, Martin Wistuba, and Josif Grabocka.
2021. Hpo-b: A large-scale reproducible benchmark for black-box hpo based on
openml. arXiv preprint arXiv:2106.06257 (2021).

[3] Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gescei. 1992. On the
optimization of a synaptic learning rule. In Optimality in Biological and Arti�cial
Networks? Routledge, 281–303.

[4] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. (2018). http://github.com/google/jax

[5] Yutian Chen, Matthew W. Ho�man, Sergio Gómez Colmenarejo, Misha Denil,
Timothy P. Lillicrap, Matt Botvinick, and Nando de Freitas. 2017. Learning to
Learn without Gradient Descent by Gradient Descent. In Proceedings of the 34th
International Conference on Machine Learning (Proceedings of Machine Learning
Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, 748–756. https:
//proceedings.mlr.press/v70/chen17e.html

[6] Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Qiuyi Zhang, David Dohan,
Kazuya Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, et al.
2022. Towards Learning Universal Hyperparameter Optimizers with Transform-
ers. arXiv preprint arXiv:2205.13320 (2022).

[7] Je� Clune, Dusan Misevic, Charles Ofria, Richard E Lenski, Santiago F Elena,
and Rafael Sanjuán. 2008. Natural selection fails to optimize mutation rates for
long-term adaptation on rugged �tness landscapes. PLoS Computational Biology
4, 9 (2008), e1000187.

[8] Antoine Cully and Yiannis Demiris. 2017. Quality and diversity optimization: A
unifying modular framework. IEEE Transactions on Evolutionary Computation 22,
2 (2017), 245–259.

[9] Sebastian Flennerhag, Yannick Schroecker, Tom Zahavy, Hado van Hasselt, David
Silver, and Satinder Singh. 2021. Bootstrapped meta-learning. arXiv preprint
arXiv:2109.04504 (2021).

[10] C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and
Olivier Bachem. 2021. Brax–A Di�erentiable Physics Engine for Large Scale
Rigid Body Simulation. arXiv preprint arXiv:2106.13281 (2021).

[11] C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and
Olivier Bachem. 2021. Brax–A Di�erentiable Physics Engine for Large Scale
Rigid Body Simulation. arXiv preprint arXiv:2106.13281 (2021).

[12] Hugo Siqueira Gomes, Benjamin Léger, and Christian Gagné. 2021. Meta learning
black-box population-based optimizers. arXiv preprint arXiv:2103.03526 (2021).

[13] Nikolaus Hansen, Anne Auger, Ste�en Finck, and Raymond Ros. 2010. Real-
parameter black-box optimization benchmarking 2010: Experimental setup. Ph.D.
Dissertation. INRIA.

[14] Nikolaus Hansen, Ste�en Finck, Raymond Ros, and Anne Auger. 2009. Real-
parameter black-box optimization benchmarking 2009: Noisy functions de�nitions.
Ph.D. Dissertation. INRIA.

[15] Nikolaus Hansen and Andreas Ostermeier. 2001. Completely derandomized
self-adaptation in evolution strategies. Evolutionary computation 9, 2 (2001),
159–195.

[16] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. 2020. Array programming with NumPy. Nature 585,
7825 (2020), 357–362.

[17] John D Hunter. 2007. Matplotlib: A 2D graphics environment. Computing in
science & engineering 9, 03 (2007), 90–95.

[18] Louis Kirsch, Sebastian Flennerhag, Hado van Hasselt, Abram Friesen, Junhyuk
Oh, and Yutian Chen. 2022. Introducing symmetries to black box meta reinforce-
ment learning. In Proceedings of the AAAI Conference on Arti�cial Intelligence,
Vol. 36. 7202–7210.

[19] Louis Kirsch and Jürgen Schmidhuber. 2021. Meta learning backpropagation
and improving it. Advances in Neural Information Processing Systems 34 (2021),
14122–14134.

[20] Jannik Kossen, Neil Band, Clare Lyle, Aidan N Gomez, Thomas Rainforth, and
Yarin Gal. 2021. Self-attention between datapoints: Going beyond individual
input-output pairs in deep learning. Advances in Neural Information Processing
Systems 34 (2021), 28742–28756.

[21] Akarsh Kumar, Bo Liu, Risto Miikkulainen, and Peter Stone. 2022. E�ec-
tive Mutation Rate Adaptation through Group Elite Selection. arXiv preprint
arXiv:2204.04817 (2022).

[22] Robert Tjarko Lange. 2021. MLE-Infrastructure: A Set of Lightweight Tools
for Distributed Machine Learning Experimentation. (2021). http://github.com/
mle-infrastructure

[23] Robert Tjarko Lange. 2022. evosax: JAX-based Evolution Strategies. (2022).
http://github.com/RobertTLange/evosax

[24] Robert Tjarko Lange. 2022. gymnax: A JAX-based Reinforcement Learning
Environment Library. (2022). http://github.com/RobertTLange/gymnax

[25] Robert Tjarko Lange, Tom Schaul, Yutian Chen, Tom Zahavy, Valenti Dallibard,
Chris Lu, Satinder Singh, and Sebastian Flennerhag. 2022. Discovering Evolution
Strategies via Meta-Black-Box Optimization. arXiv preprint arXiv:2211.11260
(2022).

[26] Robert Tjarko Lange and Henning Sprekeler. 2022. Learning not to learn: Na-
ture versus nurture in silico. In Proceedings of the AAAI Conference on Arti�cial
Intelligence, Vol. 36. 7290–7299.

[27] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and
Yee Whye Teh. 2019. Set transformer: A framework for attention-based
permutation-invariant neural networks. In International conference on machine
learning. PMLR, 3744–3753.

[28] Chris Lu, Jakub Grudzien Kuba, Alistair Letcher, Luke Metz, Christian Schroeder
de Witt, and Jakob Nicolaus Foerster. 2022. Discovered Policy Optimisation. In
Decision Awareness in Reinforcement Learning Workshop at ICML 2022.

[29] Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer,
James Bradbury, Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al.
2022. VeLO: Training Versatile Learned Optimizers by Scaling Up. arXiv preprint
arXiv:2211.09760 (2022).

[30] Luke Metz, Niru Maheswaranathan, C Daniel Freeman, Ben Poole, and Jascha
Sohl-Dickstein. 2020. Tasks, stability, architecture, and compute: Training more
e�ective learned optimizers, and using them to train themselves. arXiv preprint
arXiv:2009.11243 (2020).

[31] Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha
Sohl-Dickstein. 2019. Understanding and correcting pathologies in the training
of learned optimizers. In International Conference on Machine Learning. PMLR,
4556–4565.

[32] Andrew Y Ng and Michael I Jordan. 2000. PEGASUS: A policy search method
for large MDPs and POMDPs. In Proceedings of the Sixteenth Conference on
Uncertainty in Arti�cial Intelligence (UAI). 406–415.

[33] Junhyuk Oh, Matteo Hessel, Wojciech M Czarnecki, Zhongwen Xu, Hado P
van Hasselt, Satinder Singh, and David Silver. 2020. Discovering reinforcement
learning algorithms. Advances in Neural Information Processing Systems 33 (2020),
1060–1070.

[34] Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie
Miao, Theresa Eimer, Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra
Faust, et al. 2022. Automated reinforcement learning (autorl): A survey and open
problems. Journal of Arti�cial Intelligence Research 74 (2022), 517–568.

[35] Ingo Rechenberg. 1973. Evolutionsstrategie. Optimierung technischer Systeme
nach Prinzipien derbiologischen Evolution (1973).

[36] Raymond Ros and Nikolaus Hansen. 2008. A simple modi�cation in CMA-ES
achieving linear time and space complexity. In International conference on parallel
problem solving from nature. Springer, 296–305.

[37] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017.
Evolution strategies as a scalable alternative to reinforcement learning. arXiv
preprint arXiv:1703.03864 (2017).

[38] Gresa Shala, André Biedenkapp, Noor Awad, Steven Adriaensen, Marius Lindauer,
and Frank Hutter. 2020. Learning step-size adaptation in CMA-ES. In International
Conference on Parallel Problem Solving from Nature. Springer, 691–706.

[39] Yujin Tang and David Ha. 2021. The sensory neuron as a transformer:
Permutation-invariant neural networks for reinforcement learning. Advances in
Neural Information Processing Systems 34 (2021), 22574–22587.

[40] Yujin Tang, Yingtao Tian, and David Ha. 2022. EvoJAX: Hardware-Accelerated
Neuroevolution. arXiv preprint arXiv:2202.05008 (2022).

[41] Vishnu TV, Pankaj Malhotra, Jyoti Narwariya, Lovekesh Vig, and Gautam Shro�.
2019. Meta-learning for black-box optimization. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer, 366–381.

[42] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo,
Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. 2016.
Learning to reinforcement learn. arXiv preprint arXiv:1611.05763 (2016).

[43] Michael L Waskom. 2021. Seaborn: statistical data visualization. Journal of Open
Source Software 6, 60 (2021), 3021.

[44] Zhongwen Xu, Hado P van Hasselt, Matteo Hessel, Junhyuk Oh, Satinder Singh,
and David Silver. 2020. Meta-gradient reinforcement learning with an objective
discovered online. Advances in Neural Information Processing Systems 33 (2020),
15254–15264.

[45] Zhongwen Xu, Hado P van Hasselt, and David Silver. 2018. Meta-gradient
reinforcement learning. Advances in neural information processing systems 31
(2018).

[46] Kenny Young and Tian Tian. 2019. Minatar: An atari-inspired testbed for thor-
ough and reproducible reinforcement learning experiments. arXiv preprint
arXiv:1903.03176 (2019).

[47] Tom Zahavy, Zhongwen Xu, Vivek Veeriah, Matteo Hessel, Junhyuk Oh, Hado P
van Hasselt, David Silver, and Satinder Singh. 2020. A self-tuning actor-critic
algorithm. Advances in Neural Information Processing Systems 33 (2020), 20913–
20924.

http://github.com/google/jax
https://proceedings.mlr.press/v70/chen17e.html
https://proceedings.mlr.press/v70/chen17e.html
http://github.com/mle-infrastructure
http://github.com/mle-infrastructure
http://github.com/RobertTLange/evosax
http://github.com/RobertTLange/gymnax

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Attention-Based Genetic Operators
	5 Meta-Training, Objective & Tasks
	6 Experiments
	6.1 Meta-Training on BBOB Functions
	6.2 Meta-Testing on BBOB Functions
	6.3 Meta-Testing on Continuous HPO-B
	6.4 Meta-Testing on Neuroevolution Tasks

	7 Analysis of Discovered LGA
	7.1 Visualization of Learned Genetic Operators
	7.2 Ablation & Transfer of Genetic Operators
	7.3 Hyperparameter Robustness of LGA

	8 Conclusion
	References
	Acknowledgments
	A Attention-Based Sampling & Cross-Over Operators
	B Hyperparameter Settings
	B.1 MetaBBO Settings for LGA Discovery
	B.2 BBOB Evaluation Settings
	B.3 HPO-B (Continuous) Evaluation Settings
	B.4 Neuroevolution Evaluation Settings

	C Additional MetaBBO Results
	C.1 Attention Feature Dimension & Heads
	C.2 Comparison of Meta-Training Tasks
	C.3 Comparison of Meta-Optimizer
	C.4 Comparison of Meta-Objective Functions

	D Additional Evaluation Results
	D.1 Detailed BBOB Results
	D.2 Neuroevolution Parameter Robustness

	E Reverse-Engineering the Learned GA
	F Software, Compute, Checkpoints

