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a b s t r a c t

Hypervolume (HV) has become one of the most popular indicators to assess the quality of Pareto
front approximations. However, the best algorithm for computing these values has a computational
complexity of O(Nk/3polylog(N)) for N candidate solutions and k objectives. In this study, we propose
a regression-based approach to learn new mathematical expressions to approximate the HV value
and improve at the same time their computational efficiency. In particular, Genetic Programming is
used as the modeling technique, because it can produce compact and efficient symbolic models. To
evaluate this approach, we exhaustively measure the deviation of the new models against the real
HV values using the DTLZ and WFG benchmark suites. We also test the new models using them as a
guiding mechanism within the indicator-based algorithm SMS-EMOA. The results are very consistent
and promising since the new models report very low errors and a high correlation for problems with 3,
4, and 5 objectives. What is more striking is the execution time achieved by these models, which in a
direct comparison against standard HV calculation achieved extremely high speedups of close to 100X
for a single front and over 1000X for all the HV contributions in a population, speedups reach over
10X in full runs of SMS-EMOA compared with the standard Monte Carlo approximations of the HV,
particularly for large population sizes. Finally, the evolved models generalize across multiple complex
problems, using only two problems to train the problems from the DTLZ benchmark and performing
efficiently and effectively on all remaining DTLZ and WFG benchmark problems.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Real-world problems often require the simultaneous optimiza-
ion of several competing objectives, leading to multi-objective
ptimization problems (MOPs). One important characteristic of
OPs is that their solution sets, the so-called Pareto sets, as
ell as their images, the Pareto fronts, typically form objects of
imension (k − 1), where k is the number of objectives consid-
red in the given problem. For the numerical treatment of such
roblems, multi-objective evolutionary algorithms (MOEAs) have
aught many researchers’ and practitioners’ interest during the
ast two decades. Reasons for this include that MOEAs are of
lobal nature, very robust, require minimal assumptions on the

∗ Corresponding authors.
E-mail addresses: sr_cristian@outlook.es (C. Sandoval), ocuateg@ipn.mx

O. Cuate), lcgonzalez@uach.mx (L.C. González),
eonardo.trujillo@tectijuana.edu.mx (L. Trujillo), schuetze@cs.cinvestav.mx
O. Schütze).
ttps://doi.org/10.1016/j.asoc.2022.109103
568-4946/© 2022 Elsevier B.V. All rights reserved.
model, and are capable of computing finite-size approximations
of the entire Pareto set/front of the given MOP in a single run
of the algorithm. Since the outcome of every MOEA is an entire
set of candidate solutions (population) that ideally resembles the
solution set (mainly the Pareto front), one question that naturally
arises is how to measure the obtained approximation quality. This
is needed to compare different solution sets and guide the MOEA
towards the ‘‘best’’ Pareto front approximation.

One performance indicator that is widely used is the Hyper-
volume indicator (HV, [1,2]). Although this indicator has several
valuable properties [2–4], it has one critical weakness: the cost
for evaluating the HV value of given candidate sets grows ex-
ponentially with the number of objectives. That is, while this
cost is relatively low for bi-objective problems (compared to the
overall cost of a MOEA), the computation of the HV values become
the bottleneck for MOPs with more objectives, which represents
a severe drawback for the applicability of the HV in modern
applications. Since decision-making processes are getting more

sophisticated, it is a natural consequence that also the related
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OPs increase their number of optimization objectives. And this
s not only valid for the quality assessment of a given solution
et, but even for the correct functioning of those MOEAs that are
ased on computing thousands of HV values and HV contributions
i.e., the contribution of an individual of a given population to
he HV value) within one run of the algorithm. A straightforward
mplementation of the HV value of a given set S with a magnitude
leads to a complexity ofO(Nk+1), while the best algorithm has a

omplexity of O(Nk/3polylog(N)). Literature reports several meth-
ods that aim for a reduction of the computational cost for the
HV. For instance, some methods proposed algorithms that reduce
the complexity of the computation for specific cases [3,5]; others
employ techniques to approximate the values of the Hypervol-
ume [6]; and finally, algorithms specialized on the Hypervolume
contributions have also been proposed [7–9].

In this work, we propose using a machine learning regres-
sion technique that can produce relatively simple and efficient
models that approximate the Hypervolume indicator’s behavior.
The goal is to approximate the real indicator value, with minimal
deviation, for any given problem. The modeling strategy consid-
ered is Genetic Programming (GP), which can produce models
expressed as symbolic mathematical expressions. The GP system
is set up to obtain efficient and straightforward models, avoiding
unnecessarily large or complex structures. Thus, the resulting
expressions’ main advantage is their computational complexity,
which significantly speeds up the computational times (mostly
runs in linear time) while keeping the quality in the obtained
approximation.

Accordingly, we can summarize the main contributions of this
study as follows.

• We pose the problem of deriving approximate models of
the HV indicator as a supervised learning problem that we
approach through GP regression.

• We show that the learned models are highly efficient, partic-
ularly when combined with an adequate updating process,
achieving large speedups relative to the state-of-the-art.

• We present results that show that the evolved models ef-
fectively approximate the HV indicator, allowing them to be
used in two common scenarios: (1) quality indicators and
(2) guiding the search of an indicator-based MOEA, both
tasks tested for 3-objectives, 4-objective, and 5-objective
MOPs.

• The evolved models are quite general, since models trained
on two benchmarks can be used to guide an indicator based
MOEA on a variety of different MOPs.

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly present some definitions and related work on
multi-objective optimization and GP, respectively. In Section 3,
we present the problem formulation, posing it as a supervised
learning problem on which to apply GP. Afterwards, we outline
our proposed approach in Section 4 and provide details of the
main algorithms used. In Section 5 we present the main results
of our study. Finally, Section 6 contains the conclusions and future
work.

2. Background on multi-objective optimization and perfor-
mance indicators

A continuous MOP can be mathematically defined as follows:

min
x∈D

F (x),

s.t. G(x) ≤ 0
H(x) = 0.

(1)

Hereby, F : D ⊂ ℜ
n

→ ℜ
k, F (x) = (f1(x), . . . , fk(x)) is the
objective function that is defined by the individual objectives

2

fi : D ⊂ ℜ
n

→ ℜ. The domain D of F is defined by the subset
of the ℜ

n that satisfies all inequality and equality constraints,

D := {x ∈ ℜ
n

: G(x) ≤ 0 and H(x) = 0}. (2)

The optimality of a MOP is defined by the concept of domi-
nance. Let v, w ∈ ℜ

k, then we say that the vector v is less than
w (v <p w), if vi < wi for all i ∈ {1, . . . , k}; the relation
≤p is defined analogously. A vector y ∈ D is called dominated
by a vector x ∈ D (x ≺ y) with respect to (1) if F (x) ≤p
F (y) and F (x) ̸= F (y), else y is called non-dominated by x. A
point x∗

∈ D is Pareto optimal wrt (1) if there is no y ∈ D
which dominates x∗. The set PD of all the Pareto optimal points
is called the Pareto set and its image F (PD) is called the Pareto
front. Typically, i.e., under mild conditions in the MOP, Pareto
set and front form objects of dimension (k − 1), see [10]. Hence,
the numerical solution of a MOP refers to finding an adequate
finite-size approximation of the solution set, where most works
focus on the Pareto front since for every vector x the image F (x)
determines the qualities of x (in terms of the given individual
objectives). In order to assess the approximation quality of a given
set wrt the Pareto front several performance indicators have been
proposed in recent years including the Generational Distance
(GD, [11]), the Inverted Generational Distance (IGD, [12]), the
averaged Hausdorff distance (∆p, [13–15]), R2 [16–18], DOA [19],
IGD+ [20], and the Hypervolume (HV, [1–3]). Though the in-
dicators differ from each other, they all have in common that
they aim in their way for convergence, spread and a uniform
distribution along the solution set. In this study we will focus on
the Hypervolume indicator, since it is one of the most adopted
indicators for performing the comparison of MOEAs, and it is also
widely used for indicator-based MOEAs such as SMS-EMOA [21]
and HypE [6].

The HV indicator, also called S-metric, is defined as follows. Let
y(1), . . . , y(N)

∈ ℜ
k be a set of non-dominated vectors and r ∈ ℜ

k

(a reference point) be such that y(i) ≺ r for all i = 1, . . . , µ. Then,
the value

H
(
y(1), . . . , y(N)

; r
)

= L
(
∪

N
i=1

[
y(i), r

])
, (3)

is termed the dominated hypervolume with respect to the ref-
erence point r , where L(·) denotes the Lebesgue measure in ℜ

k.
This indicator hence measures the size of the space that is covered
or dominated by the given set, that is, the union of hypercubes
defined by a non-dominated point y(i) and a reference point r .

One major drawback of this indicator is that it is computation-
ally expensive, as its estimated complexity is O(Nk+1). However,
some specialized algorithms can achieve a better complexity
for some specific cases. For instance, the Walking Fish Group
algorithm (WFG [22]) is a state-of-the-art algorithm that has
a worst-case complexity of O(k · 2N ) though experimentally it
has a better performance on average. While the best known
algorithm for k ≥ 3 is derived from a classic problem in com-
putational geometry, i.e., Klee’s measure problem, which runs
in O(Nk/3 polylog N) [23]. On the other hand, when interested
in hypervolume contributions, for k = 2, 3 the problem has
complexity of O(N logN) [9]; and, for the general case it has
complexity of O(Nk/2 logN) for k > 2 [8].

For this reason, the use of approximations for reducing com-
putational efforts is not uncommon [6,24–26]. Algorithms that
aim to approximate the HV are very varied, some of them can
guarantee an (ϵ, δ)-approximation [27] or they use polar coor-
dinates [28]. However, for approximating the Hypervolume con-
tributions the most common approaches are instance scalarizing
function method [29], modified scalarizing function methods [30,
31], and Monte-Carlo methods [32–34]. To add some context to
this analysis, consider that in this work, we approximate the
Hypervolume contributions with a complexity of O(kN logN) and
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he main advantage of the proposed method over the above
entioned ones is that it can in principle be applied to any other
erformance indicator.
In addition, using approximations, instead of the exact HV,

s supported by some works [35,36]. Also, this search is theo-
etically supported by the fact that the use of greedy strategies
or computing the hypervolume contributions is not necessarily
ptimal [37].

.1. Synthesizing new heuristics using supervised learning

One of the most promising application domains of machine
earning in general, and GP in particular, is to derive new heuris-
ics or modify existing heuristics to improve their performance
r efficiency. Notable examples include TPOT [38], a tool for
utomatic Machine Learning (AutoML), that can evolve partial
achine learning pipelines that are optimized to solve specific
roblem instances. For Supervised Learning, GP has shown to
e able to dramatically improve classification performance when
oupled with Machine Learning algorithms, even outperforming
ompetitive methods such as Support Vector Machines (SVM)
nd Artificial Neural Networks in a variety of datasets [39,40].
or optimization problems, particularly in scheduling, GP has
een used to find heuristic dispatching rules that have been
hown to outperform standard techniques in some real-world
cenarios [41]. Similarly, in computer vision, this approach has
een used to approximate a previously known feature detection
ethod [42] or find new ones that exhibit practical character-

stics [43]. Automated Design of Algorithms (ADA) is focused
n improving meta-heuristic algorithms using evolutionary tech-
iques [44], where the focus is on evolving high-level instructions
o control or manage a search process. ADA attempts to either
eplace specific algorithmic design features or reorder a meta-
euristic algorithm. Lately, recent work has begun to explore
n-situ algorithmic improvements of existing heuristic tools, with
technique called Genetic Improvement that operates directly
t the level of source code [45]. One study has applied Genetic
mprovement on a GP library directly [46]. Through this revision,
e observe that GP can improve different kinds of heuristic
echanisms, which is the main path that this study will fol-

ow to generate fast approximations to the HV indicator for MO
roblems.

. Computational problem statement

In this work, the goal of deriving a MOEA performance indi-
ator is posed as a synthesis or learning problem instead of a
raditional analytical or formal derivation. While this could be
odeled in different ways, we propose defining a supervised
achine learning problem to build a new model to compute
performance indicator. To do so, it is necessary to define a

arget functionality that a learning algorithm will attempt to
atch, contained in a set of training instances. From this, it is

hen essential to define a suitable cost or objective function and
earch procedure that allows us to synthesize an appropriate
omputational model for the desired indicator. Thus, we pose the
earning task in the following manner.

arget functionality. The target functionality of the proposed
olutions is based on their deviation with respect to the expected
round truth, which in this case corresponds to the existing HV
ndicator. The proposed method will attempt to replicate the
V’s functionality while biasing the search towards solutions that
mprove the HV’s non-functional properties, i.e., computational
omplexity. One of this study’s contributions is the improve-
ent of the computational cost of the standard HV computation
ethods. Therefore, we aim to produce a compact and efficient
ymbolic model.
3

Training data. Supervised learning problems are defined by the
training set T = {Ii} with i = 1, . . . ,N , where each training
instance is defined as a tuple Ii = (xi, yi), where xi represents
the input data and yi is the target output. Regularly, each training
nstance xi is represented in a l dimensional space, where |l|
orresponds to the number of features or attributes of learning
bjects. The target, as defined above, is defined as the HV in
his work. On the other hand, defining the input variables is
ot as straightforward. For the HV, the input is a set of non-
ominated solutions Ai, which in principle could be given as input
o a learning algorithm. However, in practice, the cardinality
f Ai is not fixed; this limits the options of possible learning
trategies that could learn on such data. Another approach is to
ransform set Ai into a fixed-length and real-valued feature vector
i ∈ ℜ

l, where each feature dimension dji, with j = 1, . . . , l,
rovides a partial description of Ai. This is similar to how many
upervised regression and classification tasks are solved when
nalyzing complex signals, such as brain signals [47], complex
hemical processes [48], or mimicking human judgment on highly
ubjective tasks [49]. In this case, to build a training set, it will
e necessary to extract a set of real Pareto fronts and their
orresponding HV values along with a set of descriptive features.

itness or objective function. Given our definition of the train-
ng data, we will use as an error-based measure the Root Mean
quared Error (RMSE) between the estimation given by a learning
odel for the HV and the ground truth HV in the training set.
his, however, only accounts for the desired functional behavior;
t does not take into account the non-functional property of HV
stimation’s computational cost. There are two options here. One
s to add another term to the objective function, such as the
andidate model’s run time. However, another option is to curtail
he learning process not to derive overly complex solutions. The
ost of HV computation is basically a by-product of the course
f dimensionality; as the number of objectives grows, then the
omputational cost does so as well. The second approach is used
n this work with GP since it simplifies the search process and
liminates costly non-optimal models during training.

. Methodology

This section outlines our proposed approach to derive models
hat can efficiently approximate the HV indicator. The proposed
ethodology includes the following main stages.

1. Generate the learning dataset. From a set of widely used
MO benchmarks, we obtain a sample of approximations
to the Pareto front. We made this by running a MOEA on
these problems, and used a heuristic sampling policy. To
compute the HV for each data set (ground truth), we apply
the WFG implementation.1

2. Feature extraction. A set of suitable descriptive features
must be extracted from each Pareto Front to pose the learn-
ing task. We use a length-fixed feature vector regardless of
the number of points in any given front.

3. Learning method. In this work, GP is used to solve the
supervised learning model, aiming to produce compact,
efficient, and symbolic models.

4. Performance evaluation. Standard training and testing pro-
cedures are used to evaluate the evolved models. In par-
ticular, we are interested in evaluating the accuracy of the
models relative to: (1) the approximation to the ground
truth HV, (2) the efficiency of the models in terms of
computation time, and (3) the models’ ability to be used in

1 www.wfg.csse.uwa.edu.au.

http://www.wfg.csse.uwa.edu.au
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conjunction with an indicator-based MOEA (here used to
compute HV contributions). In particular, (3) might be the
most relevant for practical purposes, since the excessive
computational cost of computing the HV is one of the
biggest drawbacks of using an indicator-based MOEA.

.1. Datasets and feature extraction

In this work, we use two sets of multi-objective benchmark
roblems: the DLTZ functions [50], as well as the WFG [51] func-
ions, considering three, four, and five objectives. We have chosen
hese benchmarks since they are widely known and used by the
MO community, and since their Pareto fronts pose an inter-
sting range of different characteristics (linear, convex, concave,
nd mixed fronts, connected and disconnected fronts, as well as
egeneration). Please note that in particular, the benchmark of
FG problems is still considered a challenge for state-of-the-art
OEAs. The number of decision variables used for each problem
re set as suggested by each benchmark suite. However, to show
he generalization of the models produced by way of GP regres-
ion, we only use the DTLZ benchmark problems for training,
hile for testing both the DTLZ andWFG problem are used. In this
ense, we use simpler problems (DTLZ) to generate the models,
nd experimentally evaluate the performance on both simple and
omplex (WFG) test problems.
To generate the learning dataset, we execute the SMS-EMOA

lgorithm using the parameters of Table 1. From these executions,
e can extract a varied set of non-dominated fronts from each
roblem. SMS-EMOA uses a steady-state process to replace each
ndividual in the population every generation, where the worst
ndividual in the population (with the lowest HV contribution)
s replaced every time a new offspring enters the population.
oreover, the population is always ranked into a series of non-
ominated fronts, with the worst individuals are in the front
ith the lowest rank. Our sampling process focuses on the non-
ominated fronts that contain the worst individuals in any given
opulation, because we want to ensure that our models can
orrectly compute the HV contributions of these individuals, since
hese are the ones that need to be identified and replaced during
he SMS-EMOA search.

To achieve this, we use three sampling rules to obtain our
ets of non-dominated solutions. First, every time p new offspring
re generated we store the lowest ranked front. Second, every
eneration we store all of the fronts in the population. Finally, it is
mportant to consider that as the search progresses the popula-
ion converges to a single front, and the general approximation
f the optimal Pareto front is basically set with only minimal
mprovements with most of the new offspring generated in later
enerations. Therefore, the Pareto front becomes stagnant, and
he sampling process produces many similar fronts, which are not
ery useful for machine learning purposes. However, sometimes
small subset of individuals does aggregate in a secondary front
f dominated individuals with a lower rank, and we want to
ake sure that all of these fronts are stored since they contain

he individuals that will be subjected to replacement in the later
enerations. Hence, our third rule is to set p = 1 when there are

only two fronts in the population and the lowest ranked of the
two fronts contains less than 1/3rd of the population..

Also, only sets of three or more elements (points) were consid-
ered, eliminating all non-dominated sets of one or two elements
(since no descriptive features can be obtained). We use p =

in our experiments described below. Tables 2 and 3 sum-
arize the number of non-dominated sets extracted from each
roblem using SMS-EMOA, respectively, for the DTLZ and WFG
enchmarks.
4

Table 1
Parameters for SMS-EMOA to generate the non-dominated fronts.
Parameter Value

Population size 300
Generations 100
Crossover Simulated Binary Crossover (SBX)
Crossover probability 0.9
Mutation Polynomial
Mutation Probability 1/n

Table 2
Number of non-dominated sets extracted from each problem in the DTLZ
benchmarks.
Problem 3 Objectives 4 Objectives 5 Objectives

DTLZ1 8126 8389 12248
DTLZ2 4081 11565 12216
DTLZ3 12135 10914 8126
DTLZ4 5796 11104 10652
DTLZ5 6212 13874 12067
DTLZ6 10092 13001 10973
DTLZ7 7208 11841 11982

Table 3
Number of non-dominated sets extracted from each problem in the WFG
benchmarks.
Problem 3 Objectives 4 Objectives 5 Objectives

WFG1 4704 14218 12875
WFG2 4710 9796 10952
WFG3 6445 14407 14666
WFG4 6352 12697 13881
WFG5 6317 11952 13221
WFG6 4512 10254 11847
WFG7 7947 13563 14438
WFG8 3990 10090 11631
WFG9 8303 14063 14707

Table 4
Statistical features extracted from the non-dominated set of solutions, for the
jth objective function.
Feature Symbol

Mean µ(j)

Median (Second Quartile) Q2(j)

Standard deviation σ (j)

First Quartile Q1(j)

Second Quartile Q3(j)

Kurtosis κ (j)

Skewness γ (j)

4.1.1. Feature extraction
Feature engineering and feature extraction are well-known

as the more complex and critical processes in Machine Learn-
ing pipelines [52]. Indeed, the input features from a particular
problem often must be transformed into a suitable new space
to allow learning to take place effectively and efficiently [53,54].
This is precisely the reason why Deep Learning is pragmatically
attractive because the feature engineering and extraction process
are off-loaded directly to the learning process. However, such an
approach’s negative side-effect is the loss of model interpretabil-
ity, given that the features are in a black-box form [55]. Therefore,
in this work, we propose a relatively simple but effective set
of statistical features to describe a non-dominated set of solu-
tions. The extracted features are composed of seven descriptive
statistics, computed on the non-dominated set relative to each
objective function, as summarized in Table 4. An important factor
in the HV estimation is the computational cost. A benefit of using
relatively simple statistical descriptors for feature extraction is
their low complexity and efficient implementation.
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It means that for a k objective problem, the number of statisti-
cal features is k×7. This also means that a model learned for three
objective problems cannot be used to estimate the HV of a four
objective problem. However, having specialized estimation meth-
ods that depend on the number of objectives is not uncommon
for the HV indicator [9,22,56].

All of the objective values of the solutions in the
non-dominated set are normalized using min–max normalization
in the range [0, 1]. Normalization of the objective function values
is intended to simplify the learned models’ generalization to
different problem instances. It also allows us to omit the reference
point from each training instance’s input features, taking for all
cases the point (1.1, . . . , 1.1)T ∈ ℜ

k.
The feature vector’s computation must be as efficient as possi-

ble, as the HV approximations will also be used in the Performance
Evaluation stage as part of the SMS-EMOA algorithm. At each
generation, the HV values of the entire population and the HV
contributions of each individual must be obtained. Fortunately,
all the feature vector components are statistical moments (see
Table 4), which means that we can improve the HV contribu-
tions’ computation using special formulae. The derivation of such
formulae is detailed in Appendix A. From this, it is possible to
reduce the feature vector computation’s complexity by one order
of magnitude. For instance, consider the computation of standard
deviation for a MOP with k objectives and population size of
. Let σ (j) denote the standard deviation of the population for

the jth objective (as it is stated in Table 4), and let σ
(j)
i with

i = 1, . . . ,N , denote the standard deviation for the jth objective
of the population without the ith individual. Notice that, in the
naive way, obtaining σ (j) and σ

(j)
i has a complexity of O

(
N2
)
(N

operations for σ (j) and N−1 for each σ
(j)
i , i = 1, . . . ,N). However,

we only spend N operations to get σ (j) and a constant number of
computations for each σ

(j)
i , i = 1, . . . ,N , that is, the complexity is

now O(N). We can perform a similar analysis for each one of the
components of the feature vector. In this way, the complexity of
computing the whole vector for all the objectives is reduced from
O(kN2) to O(kN logN), due to the sorting process for computing
the quartiles.

4.2. GP-based model induction

As stated in Section 3, the goal is to generate relatively sim-
ple, efficient, and symbolic models from the supervised learning
problem that is being posed. Therefore, the proposal is to use
GP, a well-known evolutionary algorithm for the automatic model
or program induction, often used to solve challenging real-world
supervised learning problems [57,58]. The standard pseudo-code
of a GP system, similar to most EAs, is outlined in Algorithm
1. Some notable aspects of a GP algorithm are the following.
Individuals are usually expressed as variable-length syntax trees,
where each node represents an element from a Primitive Set.
The Primitive Set is composed of both Terminal and Functional
elements; the former are input features of the learning problem
(e.g. µ(j), σ (j), κ (j) etc.), numerical constants, and 0-arity functions.
The latter are basic functional building blocks used to construct
the syntactic expression, such as arithmetic operations, logical
operations, or trigonometric functions. It is possible to use more
complex control elements in a GP algorithm, such as conditionals
or loops [57]. However, these may increase computational com-
plexity of the evolved models and are therefore not used in this
work.

While standard GP is capable of solving complex real-world
problems, hybrid approaches tend to achieve the best perfor-
mance. One promising family of GP-based hybrid methods is
Constructive Induction (CI) methods that use GP to build a feature
transformation operator and an additional modeling process to
 r

5

Algorithm 1 Standard GP Pseudo-code.
1: for i = 1 to Num_Of _Generations (or until an acceptable solution is

found) do
2: if 1st generation then
3: generate the initial population with the Primitive Set

(terminals, constants and math operations)
4: end if
5: Calculate fitness (minimize and error measure) of population

members
6: Perform Tournament Selection of parent individuals
7: Create offspring using genetic operations according to specified

probabilities
8: end for
9: Return best individual in last population

derive the final model [53,54]. These are more generally known as
wrapper-based techniques for Feature Engineering and have been
used successfully in many problem domains. A useful taxonomy
of these methods is presented in [53], and one such method is
GPTIPS [54], which is used in this work. This algorithm uses a
multi-tree representation, where each subtree represents a new
feature dimension of the problem, integrates specialized search
operators, and builds the final model using regularized multiple
linear regression.

In particular, GPTIPS uses a representation that performs a
mapping m : ℜ

p
→ ℜ

d where m is the evolved model, p is
the number of original features, and d is the size of the new
feature space (number of new features produced by the model).
The root node of m works as a container and each subtree of
the root node STi defines a new feature dimension, such that
i = 1, . . . , d. Conversely, standard regression optimizes a fixed
model structure, Multiple Linear Regression (MLR) fits a linear
model to the observed dataset, as given by

yi = β0+β1xi,1+β2xi,2+· · ·+βpxi,p+ϵi for i = 1, 2, . . . , n, (4)

where the βj are the model parameters and ϵi represents the
residual error for the ith training instance.

However, MLR provides poor quality solutions against state-
of-the-art algorithms in many difficult real-world scenarios [53].
In general, the only way to improve the accuracy of the model
is to extract better predictive features. Therefore, the evolved
transformation m, found by GPTIPS, defines a new dataset {̂xi, yi}
where yi = m(̂xi) and x̂i = (̂xi,1, . . . , x̂i,d). Notice that the jth
element x̂i,j of x̂i is generated by the jth subtree STj of m. This new
dataset is used to build an MLR model, where model parameters
(β0, . . . , βd) are computed using singular value decomposition in
GPTIPS.

The search (genetic) operators in GPTIPS include two types
of crossover and various forms of mutation. High-level crossover
promotes the interchange of entire subtrees STi of the root node
between two models, while low-level crossover implements stan-
dard sub-tree crossover in GP between any internal nodes from
two individuals. Mutations can specifically act on root node sub-
trees or internal nodes following standard-subtree mutation in
GP.

The fitness function is based on the prediction accuracy of the
MLR model for each GPTIPS transformation given by the Root
Mean Square Error (RMSE), thus posing a minimization prob-
lem.2 During testing, the transformation tree m and the model

2 While fitness is usually expected to be maximized, in this case, GPTIPS
oses a minimization problem but prefer to use the term fitness to match
ommon usage in evolutionary and GP literature, another option would be to
efer to it as a cost function.
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Table 5
GPTIPS configuration.
Hyper-parameter Value

Population size 250
Number of generations 250
Crossover probability 0.95
Mutation probability 0.05
Selection Tournament, n = 20.
Number of Genes 10
Elite fraction 0.05
Max depth 7
Terminals Feature vector and random constants

Functions +, −, ×, ÷,
√

, sin, cos, tan, cot, sec, csc,
arsin, arcos, xy, ex, ln

parameters (β0, . . . , βd) are used to predict the output on unseen
ata.
Models linear in parameters, such as those generated by GP-

IPS, are often preferred in many application domains. It also
ntegrates a bloat control mechanism to push the search towards
ompact models. Given its relatively efficient implementation, it
s used in this work to solve the posed learning task. In the case of
he Terminal elements, the feature vector for the naive formula-
ion of the problem includes the reference point; however, since
he fronts are normalized, the reference point can be omitted
ince it always has a coordinate of 1 in all dimensions. Therefore,
he constant 1 is explicitly added as a final element in this case.

GPTIPS was configured based on the standard values shown
n Table 5 for all the runs reported in this work. Manual hyper-
arameter tuning was performed to achieve the best empirical
erformance. However, it must be stressed that GP algorithms
enerally tend to be very robust to these control settings [59].
n fact, expert tuning tends to be very competitive compared to
utomatic methods [60]. Most of the parameters are standard
A or GP settings, with only the Number of Genes parameters
equiring further clarification. This parameter defines the size of
he evolved models by GPTIPS. It is basically the number of terms
n the linear regression model; i.e., the number of subtrees, or
ew features, generated in the CI process by GPTIPS. This value
as chosen to keep the models small, concise, and efficient.
While other regression methods might also be applicable, such

s regularized regression techniques or stepwise linear regres-
ion, it is not the goal of this work to find the best possible
odeling technique for the posed problem but to find accurate
nd efficient models that can approximate the HV indicator.
onetheless, a series of tests were carried out (not reported
n this work) using a variety of ensemble techniques based on
ecision trees and other ML methods, including neural networks,
ut model accuracy was always similar or worse than GP, gen-
ralization was also similar, but in most cases efficiency was
ower, since most other techniques tend to require larger model
tructures.

.3. Performance evaluation

The experimental evaluation of the evolved models is carried
ut in the following manner. First, two subsets of problems are
sed to train (evolve) the models, and their generalization is
valuated on the remaining problems from each problem set.
econd, model evaluation is carried out from the following three
erspectives:

• Model Accuracy. Based on the RMSE on the training and
testing problem instances, this is a standard ML evaluation
procedure, comparing the ground truth HV and the esti-
mated HV by the best models found by GP. To complement
6

this, the Pearson’s correlation coefficient between the true
HV value and the estimated HV is also reported in some
cases.

• Run Time. The goal is to evaluate the computational cost
approximating the HV indicator with the evolved models
and contrast them with one offered by the WFG algorithm.
In this case, the run time is evaluated from two perspectives:
(i) computing the HV for a non-dominated set of solutions;
and (ii) computing the HV contribution for each individ-
ual in the non-dominated set (step performed within the
SMS-EMOA algorithm).

• Indicator-based Evolution with SMS-EMOA. A benefit of
having a performance indicator such as HV is that it can
be used beyond the function of measuring the convergence
of a given Pareto set. That is, the HV computation can also
be part of an internal mechanism of a MOEA. This with the
specific purpose to guide the search towards sets of solu-
tions with good convergence. This study is also interested
in how the developed models would behave as search-
guiding mechanisms within the SMS-EMOA algorithm. Thus,
in the context of this MOEA, we will use the evolved so-
lutions to compute the HV contribution of each individual
in the population. The convergence of the algorithm over
30 runs will be analyzed, along with examples of the actual
Pareto fronts found by SMS-EMOA implementation and the
GP-based version.

5. Experiments and results

The experiments were carried out on a Dell R730 Power
Edge Server with 2X Intel Xeon E5-2650 processors and 512 GB
RAM running KVM virtual machines over Ubuntu Linux. The GP-
TIPS 2.0 software was downloaded from https://sites.google.com/
site/gptips4matlab, running on MATLAB Version: 9.3.0.713579
(R2017b). To compute the HV indicator,we used the WFG imple-
mentation,3 the SMS-EMOA code was obtained from PlatEMO,4
ith the standard approach using Monte Carlo approximations
f the HV. The experimental results are presented for each set of
enchmark problems, considering estimation accuracy, run time
nd indicator-based evolution, as previously stated. An important
spect of this study is that we are paying special attention to
he generalization properties of the models. Thus, to generate
model, we train the method on fronts extracted from two
roblems. For training, we only use pairs of problems from the
TLZ benchmark set. Afterwards, we evaluate the performance
f the evolved models on unseen fronts of the same pair of prob-
ems, but more importantly, on fronts extracted from problems
ifferent from those used for training. In particular, we evaluate
he models on the remaining DTLZ problems and on all of the
FG problems. This experimental setting makes the evaluation
f the models unbiased but also more challenging since Pareto
ronts from different problem sets do not necessarily share the
ame characteristics, particularly when comparing the DTLZ with
he more challenging WFG problems.

For simplicity most of the performance metrics and results
re summarized in Appendix B. In what follows we highlight
he performance of the best evolved models, presenting their
ymbolic expression, summarizing their speedup relative to stan-
ard computations, and focusing on their generalization when
valuated on the WFG problems and their performance when
sed to guide an SMS-EMOA search.

3 www.wfg.csse.uwa.edu.au.
4 https://github.com/BIMK/PlatEMO/tree/master/PlatEMO.

https://sites.google.com/site/gptips4matlab
https://sites.google.com/site/gptips4matlab
https://sites.google.com/site/gptips4matlab
http://www.wfg.csse.uwa.edu.au
https://github.com/BIMK/PlatEMO/tree/master/PlatEMO
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Table 6
Estimation accuracy of the best evolved models on the DTLZ problems, showing
RMSE and Pearson on the training and test problems with the last row showing
average performance on the respective training and testing problems for each
model. Results show the performance of model M3

4,6 for 3-objective problems,
M4

5,6 for the 4-objective problems and model M5
1,5 for the five objective case.

3 Objectives 4 Objectives 5 Objectives

RMSE Pearson RMSE Pearson RMSE Pearson

DTLZ1 0.17 0.84 0.19 0.86 0.13 0.94
DTLZ2 0.08 0.93 0.13 0.84 0.23 0.91
DTLZ3 0.15 0.87 0.19 0.88 0.18 0.92
DTLZ4 0.11 0.93 0.12 0.80 0.20 0.71
DTLZ5 0.08 0.90 0.04 0.93 0.05 0.93
DTLZ6 0.07 0.96 0.06 0.96 0.07 0.94
DTLZ7 0.08 0.92 0.07 0.94 0.17 0.84

Training 0.09 0.94 0.05 0.94 0.09 0.93
Testing 0.11 0.89 0.14 0.86 0.17 0.86

Table 7
Ratio

HVGP

HV
of the true HV values of the final fronts produced on the DTLZ

roblems. HV for the SMS-EMOA front and HVGP for the front found by
SMS-EMOA with the GP model as an indicator.
Problem 3 Objectives 4 Objectives 5 Objectives

DTLZ1 0.9999 1.0000 1.0000
DTLZ2 0.9920 0.9950 0.9839
DTLZ3 0.9999 1.0000 1.0000
DTLZ4 1.0019 0.9637 0.9755
DTLZ5 1.0012 0.9772 0.9941
DTLZ6 0.9989 0.9076 0.8675
DTLZ7 0.9974 0.9954 0.9816

Average 0.9988 0.9770 0.9718

5.1. 3-Objective problems

The detailed (and extended) results analyzing the performance
n 21 different models, each evolved using a different pair of
TLZ problems for training, are summarized in Appendix B Ta-
le 11. It is noteworthy that most models present a very high
orrelation coefficient, achieving correlation values. In particular,
n all problems there are several models that obtain correlation
alues above 0.9, which are a good indicator that the models
ould be used to guide SMS-EMOA. There are, however, some
odels that perform poorly, so choosing a good model is key to
chieve the best possible performance.
For further analysis we choose one high-performing model,

odel M3
4,6, which was obtained by training with DTLZ4, and

TLZ6 and achieved correlation values above 0.90 in most prob-
ems, except DTLZ1 and DTLZ3 with correlation values of 0.848
nd 0.877 respectively. Performance of the chosen model is sum-
arized in the first row of Table 6, with very high correlation
alues, in general above 0.9 and very low errors below 0.1.
This high performance model is expressed as

3
4,6 = 1.38 · µ(1)

· µ(2)
· Q1(1)

− 1.40 · µ(2)
− 0.78 · µ(3)

−1.17 · σ (1)

− 0.24 · Q1(1)
− 0.08 · |γ (3)

| − 0.16 · log
(
κ (1)

)
−0.32 · log

(
σ (3)

)
− 0.05 · log

(
κ (2)

+ γ (2)
+ Q2(2)

· κ (3)
)

−0.08 · Q2(3)
· γ (1)

− 0.18 · Q2(3)
· γ (2)

− 1.34 · µ(1)

+0.26 · Q2(3)
· Q1(1)

· γ (2)
+ 2.50 .

(5)
7

There are several interesting aspects of model M3
4,6. First, that

ll three objectives are represented by several statistical descrip-
ors. Second, most descriptors are parametric measures, i.e., kur-
osis, mean and standard deviation, although non-parametric de-
criptors are also used. Finally, the model includes several non-
inear terms, but most terms are in fact linear.

To evaluate generalization, we further compare the perfor-
ance of the above model on each of the DTLZ and WFG prob-

ems, relative to the ground truth HV values HVGT . The exper-
ments where repeated with different population sizes, N =

100, 300, 600, 1000, 2000}, using 30 runs on each problem and
20 generations of the SMS-EMOA. The goal here is to evaluate
ow the models behave using different population sizes, and thus
ifferent sizes of the final Pareto front. This comparison is done
ased absolute error given as AE = |HVapprox − HVGT | between the
xact or ground truth HV HVGT and the approximation by the GP
odel HVapprox, from which we compute the relative error given

y RE =
AE

HVGT
which is in the range [0, 1]. Detailed results are

presented in Table 12 of Appendix B, using the average over all
runs for each problem and showing the average over all problems
with different population sizes. In all cases the relative error is
always very small, below 0.1 in all cases. Moreover, performance
seems to be very stable, across different population sizes and
different benchmark problems, including all of the testing DTLZ
and WFG problems.

The next set of results evaluates model M3
4,6 as a search guid-

ing mechanism within the algorithm SMS-EMOA. To do this ex-
periment, we run the algorithm SMS-EMOA in two versions: (1)
the standard PlatEMO version and (2) where we use M3

4,6 as a
search guiding mechanism to compute HV contributions. Results
are presented as the average of 30 runs. There are some imple-
mentation details to consider. First, given that, in some cases,
the GP models produced undefined floating-point results, the
algorithm checks for such a condition and updates the value of
the HV estimation to 0 in such cases. Similarly, when computing
the HV contributions of each individual in the Pareto front, when
the contribution is below 0.0015 according to the evolved model,
it was also rounded to zero.

Figs. 1 and 2 compare the convergence over each generation
of each version of SMS-EMOA, showing the true HV at each
generation of both versions, for the DTLZ and WFG problems
respectively. It is clear that the convergence on all problems is
basically equivalent, with only slight differences in some prob-
lems. Figs. 3 and 4 show the Pareto front found in all problems by
each version of the SMS-EMOA, taking a single representative run
in each case. The similarity in the shape and spread of solutions
of the fronts is high. If we compare the true HV values of the
final fronts found by each algorithm, HV for the SMS-EMOA
front and HVGP for the front found by SMS-EMOA with the GP

model, we can compute the ratio
HVGP

HV
to evaluate the relative

performance of each, with values below 1 indicating that there
was a performance dropoff using the GP model or vice versa.
These values are summarized in Table 7 for the DTLZ problems
and Table 8 for the WFG problems; in particular results for the
3-objective problems are presented in the first column of these
tables. The last row of these columns show the average ratio on all
problems. We can see that on average the ratio is very close to 1
on both sets of problems, which is a very good result considering
that training was carried out solely on a pair of DTLZ problems
while most of the remaining problems are only used for testing.
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Fig. 1. Convergence comparison of the standard SMS-EMOA and the GP model M3
4,6 on the 3-objective WFG problems; problems DTLZ4 and DTLZ6 were used to

rain the model.
Table 8
Ratio

HVGP

HV
of the true HV values of the final fronts on the WFG problems. HV

for the SMS-EMOA front and HVGP for the front found by SMS-EMOA with the
GP model as an indicator.
Problem 3 Objectives 4 Objectives 5 Objectives

WFG1 0.9556 0.9654 0.8261
WFG2 1.0027 0.9951 0.9845
WFG3 0.9984 0.9698 0.8623
WFG4 0.9897 0.9037 0.8152
WFG5 0.9746 0.9251 0.8113
WFG6 0.9846 0.9129 0.7772
WFG7 0.9808 0.8629 0.7552
WFG8 0.9695 0.8445 0.7597
WFG9 0.9743 0.9244 0.8081

Average 0.9812 0.9226 0.8222

A run time evaluation of the chosen model was also per-
ormed. First, we perform run time analysis of our evolved models
n the DTLZ problems compared to the exact computation of the
V. The comparison is carried out at two levels: when computing
single HV from a Pareto front and also when calculating the
V contribution of each individual in the non-dominated set
the latter is an important step in the selection mechanism of
MS-EMOA). Note that for this experiment we use the WFG algo-
ithm5 to compute the HV and contrast with the evolved model.
hese results are averaged over 30 runs. Table 13 in Appendix B
resents a detailed run time evaluation of M3

4,6 on 3 objective
roblems using different population sizes.

5 www.wfg.csse.uwa.edu.au.
8

In these tests, it is clear that the evolved models vastly out-
perform the exact method, reaching speedups from one order of
magnitude up to 1000X when computing all of the HV contri-
butions, due to the relative simplicity of the feature extraction
process and model composition. A summary of the speedups for
HV computation for each problem are shown in Table 9 consid-
ering a population of N = 300, contrasting the time (seconds)
required by the WFG algorithm and the evolved model on a single
front. The first column in Table 9 shows results on the 3-objective
case. We can see that as the number of objectives increases,
the speedup also improves, reaching two orders of magnitude
improvement on these tests.

Additionally, a run time comparison between SMS-EMOA
guided by the GP model and the standard PlatEMO implementa-
tion that uses a Monte Carlo approximation of the HV is presented
in Table 10 for both problem sets (DTLZ and WFG). The first
column of Table 10 shows performance on the 3-objective case.
Averages are given in the final row of each table. Speedups
are high on all test problems, from both DTLZ and WFG suites,
providing basically on order of magnitude improvement.

5.2. 4-objective and 5-objective problems

For the 4-objective and 5-objective problems, a similar strat-
egy is used to evolve, evaluate and compare the evolved models.
First, after comparing the 21 different models generated by using
different training pairs of DTLZ problems, the following models
were chosen. For the 4-objective case it is model M4

5,6 which is
expressed as

http://www.wfg.csse.uwa.edu.au
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Fig. 2. Convergence comparison of the standard SMS-EMOA and the GP model M3

4,6 on the 3-objective WFG problems; problems DTLZ4 and DTLZ6 were used to
rain the model.
Table 9
Run time of the HV computation for a single front achieved by the evolved GP models relative to the WFG algorithm, applied on
the DTLZ problems.

3 Objectives 4 Objectives 5 Objectives

WFG GP Speedup WFG GP Speedup WFG GP Speedup

DTLZ1 0.0009 7.4E−05 12.68 0.0018 9.1E−05 20.47 0.006 9.7E−05 68.10
DTLZ2 0.0010 7.8E−05 13.49 0.0027 1.2E−04 21.99 0.009 9.6E−05 97.96
DTLZ3 0.0009 5.8E−05 16.54 0.0008 7.8E−05 10.19 0.001 1.0E−04 16.13
DTLZ4 0.0011 8.5E−05 13.02 0.0020 9.0E−05 22.65 0.004 9.6E−05 47.32
DTLZ5 0.0010 7.7E−05 13.30 0.0016 9.4E−05 17.13 0.002 9.0E−05 31.68
DTLZ6 0.0009 8.1E−05 11.76 0.0021 1.3E−04 15.68 0.007 8.1E−05 89.96
DTLZ7 0.0010 8.8E−05 11.61 0.0019 9.4E−05 20.76 0.004 9.1E−05 52.73

Average 0.0010 7.8E−05 13.20 0.0180 1.0E−04 17.47 0.005 9.4E−05 57.70
M4
5,6 = 217.04 · σ (3)

9
2 − 0.9290 · Q1(4)

+4.16 · sin
(
sin
(
µ(2)

· σ (4)))
− 1.07 · sin

(
σ (2)2

· γ (2)

cos
(
Q1(3)

))− 48.14 · exp
(
exp

(
σ (3)3

))
− 0.48 · Q1(3)

+
68.83

cos
(
Q1(3)

) + 0.3350 · cot
(

σ (4)
1
4

)
−1.45 · µ(1)

· σ (3)

− 0.20 · Q1(2)
· cos

(
Q1(2))

· sin
(
γ (4))

+ 62.82 . (6)

For the 5-objective case it is model M4
1,5, expressed as

M5
= 0.40 · µ(4)

− 0.34 · µ(1)
+ 0.56 · Q2(2)

+ 0.23 · Q2(3)

1,5

9

+0.46 · σ (2)
− 15.70 · σ (3)

+ 0.05 · Q1(1)
+ 0.72 · Q1(2)

+3.67 · arcsin
(
arcsin

(
Q2(j)

· σ (3)))
− 14.61 · arcsin

(
σ (3)2

)
+ 10.29 · arcsin

(
tan

(
σ (3)))

+ 0.11 · cos
(
Q2(2)

+ Q2(3)
− Q1(5)

+ Q3(4)

+Q3(5)
+ log

(
κ (3)))

+ 1.14 · cos
(
µ(3)

· µ(4)
· Q1(5)

· Q3(1)
+ |σ (2)

|
)

−0.17 · tan
(
Q2(j))

+ 10.29 · tan
(
σ (3))

−
0.17

cos
(
Q3(5)

) + 0.23 · Q3(1)
· Q3(4)

−0.17 · Q1(2)
· γ (5)

− 5.22 · Q2(7)
· sin

(
σ (5))

+ 0.27 . (7)
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Fig. 3. Sample Pareto Front approximations found by SMS-EMOA (left) and the GP model M3
4,6 (right) for the 3-objective DTLZ problems; problems DTLZ4 and DTLZ6

ere used to train the model.
Table 10
Run time comparison of the standard PlatEMO SMS-EMOA implementation, with Monte Carlo approximations of the HV, and
SMS-EMOA using the GP model to compute HV contributions on both problem sets. Values are given in seconds, and SU is the
speedup.

3 Objectives 4 Objectives 5 Objectives

SMS-EMOA GP SU SMS-EMOA GP SU SMS-EMOA GP SU

DTLZ1 6.8e+02 5.2e+01 12.9 9.3e+02 8.5e+01 10.9 1.3e+03 1.1e+02 11.59
DTLZ2 1.6e+03 1.1e+02 13.5 1.7e+03 1.7e+02 10.0 2.3e+03 2.6e+02 8.63
DTLZ3 1.6e+02 3.5e+01 4.47 2.4e+02 4.5e+01 5.47 4.2e+02 6.3e+01 6.63
DTLZ4 1.4e+03 1.1e+02 13.0 1.5e+03 1.4e+02 10.6 2.1e+03 2.0e+02 10.24
DTLZ5 7.9e+02 8.3e+01 9.56 1.5e+03 1.9e+02 7.64 1.8e+03 2.7e+02 6.81
DTLZ6 8.0e+02 7.5e+01 10.6 2.5e+03 1.8e+02 13.8 2.9e+03 2.4e+02 12.0
DTLZ7 1.3e+03 1.0e+02 12.7 1.4e+03 1.4e+02 9.56 1.7e+03 2.2e+02 8.03
WFG1 6.6e+02 6.0e+01 10.9 1.4e+03 1.0e+02 14.8 2.2e+03 1.7e+02 12.83
WFG2 1.4e+03 8.0e+01 17.5 2.2e+03 1.2e+02 17.6 3.0e+03 2.0e+02 15.04
WFG3 3.2e+03 1.4e+02 22.4 2.9e+03 2.2e+02 13.0 3.1e+03 3.1e+02 10.12
WFG4 1.6e+03 1.2e+02 13.3 2.3e+03 1.9e+02 12.2 3.0e+03 2.7e+02 11.03
WFG5 1.9e+03 1.2e+02 16.0 2.2e+03 1.8e+02 12.3 2.9e+03 2.6e+02 10.98
WFG6 1.4e+03 9.3e+01 15.5 1.7e+03 1.5e+02 11.3 2.1e+03 2.3e+02 9.22
WFG7 2.4e+03 1.3e+02 17.5 2.0e+03 2.0e+02 10.2 2.7e+03 2.9e+02 9.17
WFG8 1.3e+03 8.5e+01 16.2 1.6e+03 1.6e+02 10.1 2.0e+03 2.5e+02 8.07
WFG9 2.6e+03 1.5e+02 16.6 2.4e+03 2.0e+02 11.6 2.7e+03 3.1e+02 8.67

Average 1.4e+03 9.9e+01 13.95 1.8e+03 1.5e+02 11.35 2.3e+03 2.3e+02 9.94
As was the case for the 3-objective case, both models include
escriptors from all of the objectives, and while they basically use
ll of the available descriptors the models do prefer the paramet-
ic features. Also, we can see that as the number of objectives
ncreased the use of non-linear terms becomes more prevalent,
robably due to the increased complexity in the problem. .
10
Performance of these models is summarized in the same tables
presented before, namely Tables 6–10. First, regarding the RMSE
and Pearson metrics, performance of the chosen model are mostly
equivalent to the 3-objective case, with relatively high correlation
(Pearson above 0.9) and a low RMSE on most problems. Indeed,
it is notable that performance of all three models is almost iden-
tical, showing good robustness in the learning process. Second,
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Fig. 4. Sample Pareto Front approximations found by SMS-EMOA (left) and the GP model M3
4,6 (right) for the 3-objective WFG problems; problems DTLZ4 and DTLZ6

ere used to train the model.
egarding the performance of the models when used to guide
MS-EMOA, Tables 7 and 8 also show good results. On the DTLZ
roblems, Table 7, performance is close to 1 on all problems
xcept one, DTLZ6, which seems to be the most difficult case. In
ll other cases, for bot 4 and five objectives, the ratio is between
.96 and 1. Fig. 5, shows the average convergence plots on some
xample DTLZ problems for 4 and 5 objectives, namely DTLZ7 and
TLZ3, two test problems for both models where performance is
igh, and DTLZ6 the most difficult case.
Conversely, on the WFG there is a larger performance variance,

oth among problems and between both sets of problems (4 or 5
bjectives). For 4 objectives, performance is still relatively high,
ith ratio values close to 1 on several problems and an average of
.922. However, for 5 objective problems performance is notably
ower, with an average of 0.82, a maximum of 0.98 of WFG2 and
minimum of 0.75 on both WFG7 and WFG8. Fig. 6 presents

ome sample convergence plots, using WFG2, WFG3 and WFG8 as
xamples. On WFG2, performance is similar for all cases shown
n Table 8, independent of the number of objectives. On the
ther hand, in WFG3 performance is similar for 3 and 4 objective
11
versions of the problem, but drops off for the 5-objective version.
Lastly, performance on WFG8 steadily, and almost proportionally,
declines as the number of objectives increases.

Regarding execution times, Table 9 presents the results for
HV computation. It as clear that as the number of objectives
increases, so does the relative speedup. Additionally, the total
runtime comparison between the standard SMS-EMOA and one
that uses the evolved GP models is summarized in Table 10. In
this case, we can see that the speedup achieved is on average 10X
in all problems, independent of the number of objectives or the
benchmark suite.

6. Conclusions and future work

In this work, we have presented a new methodology that
allows approximating the Hypervolume (HV) values for MOPs.
In particular, we have, for the first time in related literature,
a supervised learning problem and used GP to evolve solutions

for it. We have confirmed the reliability of our models through
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e

Fig. 5. Convergence comparison of the standard SMS-EMOA and the GP models for 4 (top row) and 5 (bottom row) objective DTLZ problems.
Fig. 6. Convergence comparison of the standard SMS-EMOA and the GP models for 4 (top row) and 5 (bottom row) objective WFG problems.
a comprehensive set of experimental evaluations. Numerical re-
sults show that our models approximate the real HV value of
the selected benchmark problems, DTLZ and WFG, with great
accuracy but require significantly less time than exact methods.
These resulting models are hence of great use for HV-based
MOEAs. Here, we have provided particular models for standard
benchmark suites considering 3, 4 and 5-objective vases. The
approach, however, is, in principle, applicable to any set of test
problems. We stress that the approach can also be extended
to other performance indicators due to GP’s flexibility. Another
significant contribution of this work is providing an efficient
way to compute statistical moments for a particular case, which
contributed to achieving a substantial reduction in the execution
time of the SMS-EMOA. We expect that the proposed models can
be used by the EMO community to reduce the time to tackle
similar problems, especially in the development phase, as well
as motivate GP’s use for the construction of new alternatives to
measure the behavior of MOEAs.

The evolved models are quite general, since they have been
volved using only a pair of problems for training, and have
12
been tested on 14 different problems, from the same benchmark
(DTLZ) and a more complex one (WFG). Performance generalized
quite well, particularly for 3 and 4 objective problems, across all
problems, which are of varying degrees of complexity. This is par-
ticularly the case when the models are used to guide an indicator
based MOEA, in our case SMS-EMOA. We have shown that our
evolved models that approximate the HV indicator can be used
to accurately and efficiently approximate the HV contributions
and guide the SMS-EMOA search, reducing the search time by a
one orders of magnitude in most cases. However, performance
is not as robust when dealing with 5-objective problems. While
performance was comparable to the standard SMS-EMOA on the
DTLZ problems, it was notably reduced on the more complex
WFG benchmark problems. We hypothesized that this can be
resolved by incorporating more complex problem in the training
phase of the models, or other alternatives as described below.

There are several possible paths for future work. First, we
conjecture that the reported execution time can be reduced even
more as the HV contributions’ computation using our formu-

las is highly parallelizable. Further, a more detailed analysis of
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Table 11
Estimation accuracy of the evolved models on the DTLZ 3-objective benchmark problems. For each row the training pair of problems is different, while the final row
summarizes the training and testing performance.
No. Training problems Problems

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

RMSE Pearson RMSE Pearson RMSE Pearson RMSE Pearson RMSE Pearson RMSE Pearson RMSE Pearson

1 DTLZ1-DTLZ2 0.120 0.924 0.071 0.947 0.135 0.908 0.139 0.902 0.484 0.251 0.329 0.422 0.147 0.854
2 DTLZ1-DTLZ3 0.121 0.922 0.117 0.911 0.125 0.921 0.157 0.875 0.168 0.899 0.172 0.914 0.136 0.919
3 DTLZ1-DTLZ4 0.120 0.924 0.076 0.951 0.134 0.909 0.103 0.945 0.141 0.826 0.190 0.855 0.107 0.926
4 DTLZ1-DTLZ5 0.125 0.919 0.178 0.791 0.139 0.906 0.197 0.787 0.066 0.937 0.099 0.935 0.116 0.910
5 DTLZ1-DTLZ6 0.126 0.916 0.132 0.871 0.144 0.903 0.167 0.848 0.088 0.893 0.081 0.955 0.099 0.939
6 DTLZ1-DTLZ7 0.124 0.918 0.116 0.903 0.131 0.913 0.145 0.888 0.152 0.808 0.143 0.892 0.081 0.953
7 DTLZ2-DTLZ3 0.371 0.651 0.067 0.953 0.121 0.925 0.862 0.489 0.336 0.461 0.177 0.823 0.110 0.916
8 DTLZ2-DTLZ4 0.321 0.608 0.066 0.954 0.173 0.868 0.100 0.948 0.240 0.647 0.190 0.765 0.097 0.932
9 DTLZ2-DTLZ5 0.712 0.146 0.071 0.949 0.287 0.675 0.180 0.846 0.067 0.934 0.127 0.894 0.152 0.892
10 DTLZ2-DTLZ6 0.556 0.408 0.066 0.956 0.328 0.623 0.421 0.762 0.090 0.913 0.070 0.966 0.091 0.952
11 DTLZ2-DTLZ7 0.492 0.372 0.059 0.964 0.212 0.809 0.228 0.748 0.203 0.753 0.135 0.901 0.075 0.960
12 DTLZ3-DTLZ4 0.181 0.850 0.085 0.942 0.127 0.918 0.110 0.937 0.158 0.846 0.199 0.871 0.099 0.936
13 DTLZ3-DTLZ5 0.129 0.913 0.168 0.854 0.126 0.919 0.161 0.868 0.062 0.940 0.082 0.955 0.117 0.926
14 DTLZ3-DTLZ6 0.132 0.912 0.121 0.906 0.127 0.918 0.175 0.860 0.086 0.897 0.076 0.961 0.105 0.934
15 DTLZ3-DTLZ7 0.137 0.903 0.071 0.948 0.126 0.919 0.141 0.898 0.181 0.802 0.140 0.904 0.082 0.952
16 DTLZ4-DTLZ5 0.219 0.776 0.102 0.908 0.208 0.800 0.111 0.937 0.072 0.932 0.094 0.944 0.106 0.931
17 DTLZ4-DTLZ6 0.177 0.848 0.084 0.934 0.156 0.877 0.114 0.933 0.087 0.908 0.074 0.963 0.085 0.927
18 DTLZ4-DTLZ7 0.157 0.876 0.068 0.955 0.152 0.887 0.106 0.942 0.233 0.698 0.151 0.904 0.076 0.959
19 DTLZ5-DTLZ6 0.432 0.687 0.132 0.890 0.253 0.821 0.385 0.756 0.060 0.946 0.071 0.965 0.105 0.936
20 DTLZ5-DTLZ7 0.145 0.846 0.143 0.881 0.150 0.882 0.171 0.847 0.060 0.946 0.075 0.957 0.078 0.957
21 DTLZ6-DTLZ7 0.567 0.314 0.110 0.916 0.285 0.641 0.347 0.473 0.072 0.926 0.074 0.963 0.078 0.957

Training 0.123 0.920 0.067 0.954 0.125 0.920 0.107 0.940 0.137 0.891 0.075 0.961 0.090 0.947
Testing 0.315 0.674 0.113 0.904 0.192 0.828 0.211 0.839 0.181 0.769 0.154 0.862 0.111 0.922
t

Table 12
Performance comparison, given as relative error, of the Pareto front approxi-
mation of the evolved GP model M3

4,6 compared with the true HV value, using
ifferent number of points N in the Pareto front.

N = 100 N = 300 N = 600 N = 1000 N = 2000

DTLZ1 0.0105 0.0117 0.0187 0.0369 0.0439
DTLZ2 0.0242 0.0497 0.0599 0.0696 0.0789
DTLZ3 0.0093 0.0107 0.0156 0.0336 0.0487
DTLZ4 0.0163 0.0307 0.0441 0.0582 0.0597
DTLZ5 0.0314 0.0374 0.0620 0.0756 0.0922
DTLZ6 0.0102 0.0149 0.0214 0.0380 0.0509
DTLZ7 0.0010 0.0020 0.0049 0.0073 0.0327
WFG1 0.0023 0.0089 0.0204 0.0403 0.0502
WFG2 0.0083 0.0196 0.0214 0.0304 0.0536
WFG3 0.0013 0.0115 0.0263 0.0457 0.0702
WFG4 0.0231 0.0787 0.1026 0.1019 0.1040
WFG5 0.0248 0.0484 0.0707 0.0795 0.0898
WFG6 0.0529 0.0548 0.0791 0.0894 0.1028
WFG7 0.0212 0.0411 0.0780 0.0805 0.0952
WFG8 0.0336 0.0124 0.0536 0.0793 0.0922
WFG9 0.0609 0.0501 0.0634 0.0676 0.0852

Average 0.0207 0.0301 0.0463 0.0583 0.0718

the our approach’s performance against different state-of-the-art
MOEAs is also left for future work. The proposed approach can
of course be used to generate new models based any benchmark
suite or even using real-world case studies, and alternative ways
can be developed to build these models, such as using different
descriptors for the Pareto fronts or using alternative learning
paradigms. Another aspect is that our approach produces models
that do not scale to different numbers of objectives; i.e., we
cannot use a model trained on 3-objective problems on a 5-
objective problem. To achieve this a different learning strategy
is required, since in our work the number of features increases
proportionally with the number of problem objectives. Finally,
focusing on approximating the HV might be set aside altogether,
and instead use a learning method to generate new Pareto front
indicators that can be used to both evaluate Pareto front approxi-
mations and guide an indicator-based MOEA. The data for existing
models and test problems can be found in https://github.com/
NumericalEvolutionaryOptimization/HVApproximations.
13
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Appendix A

In the following, we describe the update strategies we have
used to speed up the computations of the Hypervolume contri-
butions.

Let A := {x1, . . . , xN} ⊂ ℜ
n be an archive of size N , and let

FA := F (A) = {y1, . . . , yN} ⊂ ℜ
k be the image of A (i.e., yi = F (xi)).

We are interested in efficiently computing the first four statistical
moments (mean, variance, kurtosis, and skewness) for all the
subsets FAi, i = 1, . . . ,N , where FAi ⊂ FA denotes the images
of the sub-populations Ai ⊂ A, i = 1, . . . ,N where the ith
individual is removed,

F = {y , y , . . . , y , y , . . . , y }.
Ai 1 2 i−1 i+1 N

https://github.com/NumericalEvolutionaryOptimization/HVApproximations
https://github.com/NumericalEvolutionaryOptimization/HVApproximations
https://github.com/NumericalEvolutionaryOptimization/HVApproximations
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Table 13
Run time analysis of the evolved model on the 3 objective DTLZ benchmarks, using M3

4,6 .

N = 100 N = 300 N = 600 N = 1000 N = 2000

Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

DTLZ1

GP-Model 2.8733e−0.5 – 7.4267e−05 – 0.00015 – 0.00023 – 0.00048 –
WFG 0.00036 12.819 0.00094 12.682 0.00285 17.995 0.00663 27.892 0.024732 51.046
GP-Model contributions 0.00152 – 0.00049 – 0.00102 – 0.00143 – 0.00329 –
WFG contributions 0.01127 7.38 0.21361 433.59 1.4918 1462.21 6.5862 4591.95 51.3467 15584.63
DTLZ2

GP-Model 3.25E−05 – 7.80E−05 – 0.00014 – 0.00021 – 0.00049 –
WFG 0.00033 10.33 0.00105 13.49 0.00313 22.34 0.00750 34.78 0.02768 56.09
GP-Model contributions 0.00025 – 0.00053 – 0.00092 – 0.00137 – 0.00376 –
WFG contributions 0.01119 43.07 0.2225 418.90 1.5502 1683.48 6.79606 4948.09 53.3537 14183.50
DTLZ3

GP-Model 2.45E−05 – 5.98E−05 – 0.00010 – 0.00015 – 0.00044 –
WFG 0.00033 13.74 0.00099 16.54 0.00258 24.35 0.00644 41.72 0.02587 57.55
GP-Model contributions 0.00023 – 0.00055 – 0.00097 – 0.00111 – 0.00321 –
WFG contributions 0.01145 49.50 0.20848 376.75 1.53 1562.14 6.2444 5615.08 49.1003 15253.26

DTLZ4

GP-Model 2.61E−05 – 8.85E−05 – 0.00013 – 0.00022 – 0.00038 –
WFG 0.00042 16.10 0.00115 13.02 0.00317 22.91 0.00840 36.75 0.03138 82.38
GP-Model contributions 0.00021 – 0.00066 – 0.00094 – 0.00146 – 0.00260 –
WFG contributions 0.01289 60.38 0.2228 336.34 1.6344 1728.36 7.8537 5366.55 59.35976 22777.82
DTLZ5

GP-Model 3.27E−05 – 7.87E−05 – 0.00014 – 0.00024 – 0.00047 –
WFG 0.00035 10.94 0.001046 13.30 0.002718 19.025 0.007113 29.37 0.026915 57.12
GP-Model contributions 0.00024 – 0.000537 – 0.00093 – 0.00151 – 0.00274 –
WFG contributions 0.01136 46.59 0.21763 404.86 1.6917 1816.28 7.32541 4841.97 54.6090 19917.26
DTLZ6

GP-Model 2.83E−05 – 8.71E−05 – 0.00015 – 0.00023 – 0.00047 –
WFG 0.00043 13.61 0.00098 11.76 0.00302 18.58 0.00689 30.42 0.02668 55.64
GP-Model contributions 0.00025 – 0.00053 – 0.00097 – 0.00138 – 0.00283 –
WFG contributions 0.01189 47.43 0.21529 404.97 1.5153 1560.96 6.8322 4944.04 55.4811 19574.58
DTLZ7

GP-Model 3.21E−05 – 08.38E−05 – 0.00016 – 0.00022 – 0.00047 –
WFG 0.00041 14.61 0.00101 11.61 0.00285 18.77 0.006892 28.89 0.02553 54.14
GP-Model contributions 0.00022 – 0.00056 – 0.00097 – 0.00146 – 0.00272 –
WFG contributions 0.01237 54.97 0.23472 413.17 1.4653 1501.62 6.6333 4524.87 51.0786 18753.62
In the same way, we desire to obtain the order moments
elated to the quartiles 10, 25, 50 (the median), and 75. For sake
f simplification, denote by T ∈ ℜ

N the set of values of the jth
objective in the archive FA, and analog Ti.

The computation of the mean is an easy task. Since

T̄ =
1
N

N∑
j=1

tj (8)

it follows that

T̄i =
1

N − 1

N∑
j=1
j̸=i

tj =
NT̄ − ti
N − 1

. (9)

That is, instead of making the sum of N − 1 elements for each Ti
(the naive way), we first compute the sum of all the N elements,
and then we subtract the corresponding value ti. This represents
a saving in the number of sums from N+N(N−1) = N+N2

−N =
2 to N +N = 2N . That is, using the Landau symbol, a reduction
f the complexity of the procedure from O(N2) down to O(N).
For the variance, we have the following for each set Ti:

2
=

1
N − 2

N−1∑
j=1
j̸=i

(
tj − T̄i

)2
. (10)

ere, every term of the sum depends on a different parame-
er (i.e., T̄ ). Thus, we cannot proceed in the same way as for
i

14
the mean. In order to avoid unnecessary computations, we will
consider the following procedure.

First, notice that by (9):

T̄ = T̄i +
ti − T̄i
N

and then, we compute the following sum

S2 =

N∑
j=1

(
tj − T̄

)2
=

N∑
j=1

[(
tj − T̄i

)
−

(
ti − T̄i
N

)]2

=

N∑
j=1

[(
tj − T̄i

)2
−

2
N

(
tj − T̄i

)
(ti − T̄i) +

(ti − T̄i)2

N2

]

=

N∑
j=1

(
tj − T̄i

)2
−

2(ti − T̄i)
N

N∑
j=1

(
tj − T̄i

)
+

(ti − T̄i)2

N

=

N∑
j=1

(
tj − T̄i

)2
− 2(ti − T̄i)

(
T̄ − T̄i

)
+

(ti − T̄i)2

N

= S2i +
(
ti − T̄i

)2
− 2(ti − T̄i)

(
T̄ − T̄i

)
+

(ti − T̄i)2

N

(11)

Defining Si :=
∑N−1

j=1 (ti − T̄i), we can obtain the desirable
expression

S2 = S2 − 2(T̄ − T̄ )S − (N − 1)(T̄ − T̄ )2 − (t − T )2. (12)
i i i i i
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e can hence proceed in the same way to obtain similar expres-
ions for the following sums.

3
=

N∑
j=1

(
tj − T̄

)3
=

N∑
j=1

[(
tj − T̄i

)
−

(
ti − T̄i
N

)]3
(13)

nd

4
=

N∑
j=1

(
tj − T̄

)3
=

N∑
j=1

[(
tj − T̄i

)
−

(
ti − T̄i
N

)]3
(14)

rom which we can obtain, respectively
3
i = S3−3(T̄i−T̄ )S2i −3(T̄i−T̄ )2Sj−(N−1)(T̄i−T̄ )3−(ti−T̄ )3 (15)

and

S4i = S4 − 4(T̄i − T̄ )S3i − 6(T̄i − T̄ )2S2i − 4(T̄i − T̄ )3

× Sj − (N − 1)(T̄i − T̄ )4 − (ti − T̄ )4
(16)

Observe that for the computation of every S ji , where i =

1, . . . ,N and j = 1, . . . , 4, we only need to know the sum S j. This
reduces the number of operations that are needed by a factor of
N . Notice that, for computing S j we need N sums and powers of
j. On the other hand, if we compute every S ji in the naive way, we
will require N − 1 sums and powers of j for each one of the N
sums, that is, N(N − 1). Now, with our formulas, we only need c
multiplications for each S ji , that is, cN . In other words, we speed
up the computations by a factor of N .

Finally, using the above formulas we can compute the desir-
able statistical moments. Since in this work we assume that our
data represents a sample from a population, we use the following
expressions:

σi =

√
S2i

N − 2
(17)

γi =

1
N−1S

3
i(√

1
N−1S

2
i

)3 (18)

κi =

1
N−1S

4
i( 1

N−1S
2
i

)2 (19)

For the computation of the quartiles we can also be reduce
he complexity via a simple rule. Notice that, after sorting the
omplete array T , the only thing we have to do is to compare
he value ti when we ask for the quartiles of the set Ti. If ti is
ess than the value in the desirable position, then we compute
he new value of the quartile. Otherwise, we conserve the value
f the quartile, since removing ti does not alter the order of the
irst values. The only cost we have to consider is the first sorting
hich has a complexity of O(N logN).

ppendix B

Table 11 presents the performance of the 21 different models
volved for different pairs of DTLZ problems and tested on prob-
ems from the same benchmark set, considering the 3-objective
roblems.
Performance of the M3

4,6 model for 3-objective problems on
ach of the DTLZ and WFG problems, relative to the ground
ruth HV values HVGT are presented in Table 12. The exper-
ments where repeated with different population sizes, N =

100, 300, 600, 1000, 2000}, using 30 runs on each problem and
20 generations of the SMS-EMOA. The following measures were
omputed: the absolute error given as AE = |HV − HV |,
approx GT

15
nd the relative error given by RE =
AE

HVGT
, computing the

average over all fronts.
Table 13 presents a detailed run time evaluation of M3

4,6 on 3
bjective problems. The comparison is carried out at two levels:
hen computing a single HV from a Pareto front and also when
alculating the HV contribution of each individual in the non-
ominated set (the latter is an important step of SMS-EMOA used
s a selection mechanism). Note that for this experiment we use
he WFG algorithm to compute the HV and contrast with the
volved model. These results are averaged over 15 runs.
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