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Abstract. An evolutionary algorithm is combined with an application-specific
developmental scheme in order to evolve efficient arbitrarily large sorting networks.
First, a small sorting network (that we call the embryo) has to be prepared to solve
the trivial instance of a problem. Then the evolved program (the constructor) is
applied on the embryo to create a larger sorting network (solving a larger instance
of the problem). Then the same constructor is used to create a new instance of the
sorting network from the created larger sorting network and so on. The proposed
approach allowed us to rediscover the conventional principle of insertion which is
traditionally used for constructing large sorting networks. Furthermore, the principle
was improved by means of the evolutionary technique. The evolved sorting networks
exhibit a lower implementation cost and delay.
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1. Introduction

Evolutionary design has really become a popular and successful de-
sign method in many engineering areas in the recent years (Bentley,
1999; Bentley–Corne, 2001). For instance, innovative and useful solu-
tions are routinely discovered by evolutionary techniques in the field of
evolvable hardware (Gordon–Bentley, 2001; Higuchi et al., 1993; Miller
et al., 2000; Sekanina, 2003). Evolutionary design has allowed us (1)
to discover novel solutions, with features that are beyond the scope of
the solutions generated by conventional engineering methods and (2)
to perform hard engineering work in some areas automatically.

In the engineering domain we can formulate the goal of the evolu-
tionary design as follows: to produce new, innovative and useful so-
lutions to complex problems that can automatically be created with
the minimal effort and domain knowledge of a designer. Therefore,
the challenge of conventional design is being substituted by designing
an evolutionary process that automatically performs the design for a
given problem. This may be harder than performing the creative design
directly, but makes automation possible.

In fact, only relatively simple designs were successfully evolved so
far. As Torresen commented on the classical paradigm of evolutionary
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design, large objects require longer chromosomes, i.e. the search space
is also larger and so difficult to be effectively explored by evolutionary
algorithm (Torresen, 2002). It also gets difficult and time consuming to
evaluate candidate solutions as they get more complex. For instance, in
case of digital combinational circuits, the time of evaluation of a circuit
doubles with adding a single input variable.

In order to eliminate the problem of scale in the evolutionary circuit
design, designers have introduced various approaches, which can be
divided into three classes: functional level evolution (e.g. (Murakawa,
1996)), incremental evolution (e.g. (Torresen, 2002)) and development
(e.g. (Gordon–Bentley, 2002; Haddow–Tufte, 2001)). We will be inter-
ested in development in this paper.

When a sort of development is included into an evolutionary al-
gorithm, a chromosome has to contain a prescription for constructing
a target object rather than a description of a target object itself. A
number of approaches to development were tested and described in
literature to solve various problems. However, in most cases, the ob-
tained solutions have shown the same complexity as the solutions gener-
ated without development (e.g. (Gordon–Bentley, 2002; Haddow–Tufte,
2001; Miller–Thomson, 2003)).

The goal of this paper is to combine evolutionary design with a
form of development in order to evolve “infinitely scalable” objects, in
particular, arbitrarily large sorting networks. We chose the sorting net-
works because (1) conventional solutions to designing arbitrarily large
sorting networks exist and, therefore, we can compare the results, (2)
evolutionary techniques have already been utilized to design a sorting
network with the predefined number of inputs (but not to design an
arbitrarily large sorting network), and (3) sorting networks are suitable
for implementation in hardware which is our main research objective
in general (but not in this paper).

An approach is presented in which a sorting network can grow con-
tinually and infinitely. First, a small sorting network (that we call the
embryo) has to be prepared to solve the trivial instance of a problem.
Then the evolved program (the constructor) is applied on the embryo
to create a larger sorting network (solving a larger instance of the prob-
lem). Then the same constructor is used to create a new instance of the
sorting network from the created larger sorting network and so on. Ev-
ery new instance of the sorting network is able to perform the function
of all its previous instances. We will demonstrate that the constructor
can be designed automatically by means of evolutionary techniques.
Furthermore, it will be shown that some of evolved constructors are
able to produce much more efficient sorting networks (in terms of the
comparison count and delay) than a traditional conventional solution

jd.tex; 24/02/2005; 17:19; p.2



Evolutionary Design of Arbitrarily Large Sorting Networks Using Development 3

can offer. The proposed method improves Sekanina’s initial approach,
described in (Sekanina, 2004), which did not yield better solutions
than conventional methods. His method also did not deal with delay of
resulting circuits.

This paper is organized as follows. Section 2 briefly surveys prin-
ciples, models and applications of development. In Section 3 basic
concepts and design approaches to sorting networks are presented.
Section 4 introduces the proposed approach to the evolutionary de-
sign of sorting networks with development. The obtained results are
summarized in Section 5 and discussed in Section 6. Conclusions are
given in Section 7.

2. Development in Evolutionary Design

A multicellular organism is determined by its genetic information and
the environment in which lives. In the process of development an adult
organism is formed from a zygote. Genes, inherited from parent(s),
are used to create proteins. Proteins activate or suppress other genes,
work as signals among cells, influence internal functions of the cells
and perform many other important roles. Therefore, they control the
growth, position and behavior of all cells. All these processes are very
complex and not fully understood (Alberts et al., 1998).

In case of evolutionary algorithms, the process of development is
usually considered as a nontrivial genotype–phenotype mapping. While
genetic operators work with genotypes, the fitness calculation is ap-
plied on phenotypes created by means of a developmental system.
Various approaches have been investigated in order to utilize non-trivial
genotype–phenotype maps (see survey in (Kumar, 2004)). For instance,
Dawkins’s biomorphs represent a very nice example (Dawkins, 1991).
These techniques have been referred to as, for example, developmental
encodings, morphogenesis, embryogenesis, generative systems, neuroge-
nesis, computational embryology, etc. Recently, Kumar has introduced
a more general, collective umbrella term, Computational Development
(Kumar, 2004).

In the context of evolutionary algorithms, computational develop-
ment might be utilized to achieve diverse objectives, including: adapta-
tion, compacting genotypes, reduction of search space, allowing more
complex solutions in solution space, regulation, regeneration, repeti-
tion, robustness, scalability, evolvability, parallel construction, emer-
gent behavior and decentralized control (Kumar, 2004). In particular,
we mainly deal with scalability in this paper.
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2.1. Evolvability and Scalability

The little understood capacity to be able to reach good solutions via
evolution is called evolvability (Nehaniv, 2003). Evolvability is the
ability to evolve easily. Wagner and Altenberg noted that in evolution-
ary algorithms it was found that the Darwinian process of mutation,
recombination and selection is not universally effective in improving
complex systems like computer programs or circuits. For adaptation to
occur, these systems must possess evolvability, i.e. the ability of random
variations to sometimes produce improvement. It was found that evolv-
ability critically depends on the way of mapping genetic variation onto
phenotypic variation, an issue known as the representation problem.
The genotype–phenotype map is the common theme underlying such
varied biological phenomena as developmental constraints, biological
versatility, developmental dissociability, morphological integration, and
some others (Wagner–Altenberg, 1996).

Scalability is considered as one of the most difficult problems in
the evolutionary design field in general and in the evolvable hardware
field in particular. Despite increased interest in techniques of effective
encoding, smart search strategies and clever fitness functions (Gordon–
Bentley, 2002; Haddow–Tufte, 2001; Murakawa, 1996; Sekanina, 2003;
Torresen, 2002)), only very small circuits (in comparison to the circuits
designed conventionally) were evolved up to now. Hence developmental
approaches have become very popular in the recent years.

2.2. Models and Applications of Development

Models of development were surveyed in Chapter 2 of (Kumar, 2004).
Scientists construct these models either to learn how development works
in nature or to solve the problems of practical evolutionary design
in engineering or in the field of artificial life. In this section we will
briefly recall only a class of models related (in some way) to our work
– evolutionary design of arbitrarily large sorting networks.

In bio-inspired hardware and software systems the genotype–pheno-
type mapping is often implemented by means of rewriting systems.
The first rewriting developmental (neuro)system was investigated by
Kitano (Kitano, 1990). Later, among others, Boers and Kuiper have
utilized L-systems to create the architecture of feed-forward artificial
neural networks (Boers–Kuiper, 1992). Haddow et al. have adopted L-
system in order to evolve scalable digital circuits (Haddow et al., 2001).
Three-dimensional mechanical objects have been designed by evolution
that also utilized a variant of L-system in its genotype–phenotype
map (Hornby–Pollack, 2001).
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John Koza introduced an original method in which novel analog
circuits have been constructed according to the instructions produced
by genetic programming (Koza et al., 1999). Among other activities,
Koza’s team employed this technique for routine duplication of fourteen
patented inventions in the analog circuit domain (Streeter et al., 2002).

In another approach, Gordon and Bentley have utilized the inter-
action of artificial genes and proteins to model development in digital
circuits (Gordon–Bentley, 2002). CAM Brain machine (de Garis et al.,
1999) and POEtic platform (Tempesti et al., 2003) are examples of
those systems that use cellular automata-based development. Gruau
proposed a genetic encoding scheme for artificial neural networks based
on a cellular duplication and differentiation process. The construction
starts with a single cell that undergoes a number of duplications and
transformations phases ending up in a complete artificial neural net-
work. The genotype is considered as a collection of rules governing the
process of cell division and transformations (Gruau, 1994).

Miller and Thomson have invented a developmental method for
growing graphs and circuits using Cartesian genetic programming in
order to evolve similar constructors to ours (referred to as iterators
in (Miller–Thomson, 2003)). Because they worked at a very low level
of abstraction (as configuration bits of a hypothetical reconfigurable
hardware) no general constructor has been found for their task, i.e. the
design of large even parity circuits. However, other researchers have
successfully evolved completely general solutions to the even-parity
problem; for instance Huelsbergen, who has worked at the machine
code level (Huelsbergen, 1998).

In order to evolve 3D shape and form Kumar has used complex and,
therefore, realistic models of development inspired by genetic regulatory
networks (Kumar, 2004). Bentley has invented fractal proteins for the
same purpose. A fractal protein is a finite square subset of Mandelbrot
set, defined by three artificial codons that form the coding region of a
gene in the genome of a cell (Bentley, 2004).

These methods have illustrated various approaches to the develop-
ment; however, only a few of them were successful with designing large
systems for real-world applications.

3. Sorting Networks and Their Design

The concept of sorting networks was introduced in 1954; Knuth traced
the history of this problem in his book (Knuth, 1998). A sorting network
is defined as a sequence of compare–swap operations (comparators) that
depends only on the number of elements to be sorted, not on the values
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Figure 1. (a) A three-input sorting network consists of three comparators. (b)
Alternative symbol. This network can be described using the string (0,1)(1,2)(0,1).

Table I. The number of comparators and delay of the best currently known sorting networks

Inputs (N) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Delay 0 1 3 3 5 5 6 6 7 8 8 9 10 10 10 10

Comparators 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60

of the elements. A compare–swap of two elements (a, b) compares and
exchanges a and b so that we obtain a ≤ b after the operation.

The main advantage of the sorting network is that the sequence
of comparisons is fixed. Thus it is suitable for parallel processing and
hardware implementation, especially if the number of sorted elements
is small. Figure 1 shows an example of a 3-input sorting network.

The number of compare–swap components and delay are two crucial
parameters of any sorting network. By delay we mean the minimal
number of groups of compare–swap components that must be executed
sequentially. Designers try to minimize the number of comparators,
delay or both parameters. Table I shows the number of comparators
and delay of some of the best currently known sorting networks. Some of
these networks were designed (or rediscovered) using evolutionary tech-
niques (Choi–Moon, 2001; Choi–Moon, 2002; Choi–Moon, 2002a; Hillis,
1990; Juillé, 1995; Koza et al., 1999). In most cases the evolution-
ary approach was based on the encoding given in Fig. 1 (in which
comparator inputs are encoded using two integers). Evolutionary tech-
niques were also utilized to discover fault-tolerant sorting networks
(Harrison–Foster, 2004; Masner et al., 2000).

In order to find out whether an N -input sorting network operates
correctly we should test N ! input combinations. Thanks to the zero–
one principle this number can be reduced. This principle states that if
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Figure 2. Making (N+1)-sorters from N -sorters: (a) insertion and (b) selection
principle

an N -input sorting network sorts all 2N input sequences of 0’s and
1’s into nondecreasing order, it will sort any arbitrary sequence of
N numbers into nondecreasing order (Knuth, 1998). Furthermore, if
we use a proper encoding, on say 32 bits, and binary operators AND
instead of minimum and OR instead of maximum, we can evaluate 32
test vectors in parallel and thus reduce the testing process 32 times.
Unfortunately, it is usually impossible to obtain the general solution if
only a subset of input vectors is utilized during the evolutionary design
(Imamura et al., 2000).

Sorting networks are usually designed for a fixed number of inputs.
It is also valid for the mentioned evolutionary approaches. Note that the
evolutionary approach is not scalable. Some conventional approaches
exist for designing arbitrarily large sorting networks. Figure 2 shows two
principles for constructing a sorting network for N + 1 inputs when an
N -input network is given (Knuth, 1998).

− Insertion – the (N+1)st input is inserted into a proper place after
the first N elements have been sorted.

− Selection – the largest input value can be selected before we pro-
ceed to sort the remaining ones.

We can see that the insertion principle corresponds to the straight
insertion algorithm known from the theory of sorting. The selection
principle is related to the bubble sort algorithm. Examples of sorting
networks created using the two principles are shown in Fig. 3. Observe
that while physical positions of comparators are different, their log-
ical positions are equivalent. Hence it is possible to re-arrange these
comparators in order to obtain a single sorting network (see Fig. 4).
The network contains the comparators that can be executed in parallel.
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Figure 3. Examples of sorting networks created using (a) insertion and (b) selection
principle

Figure 4. A sorting network with parallel layers (in rectangles)

Therefore, its delay can be reduced substantially. These comparators
form the so-called parallel layers.

It is obvious that the sorting networks created using insertion or
selection principle are much larger than those networks designed for a
particular N . However, the method can be treated as a general design
principle for building arbitrarily large sorting networks. In next sec-
tions, the principle will be rediscovered firstly and then improved by
means of evolutionary techniques.

4. Development for Sorting Networks

The objective of this paper is to propose an application-specific devel-
opment for evolutionary algorithms, which, consequently, will be able
to produce innovative arbitrarily large sorting networks. Recall that the
common evolutionary design of sorting networks deals with designing
a single sorting network with a predefined number of inputs.

4.1. Basic Concept

The proposed algorithm is based on Sekanina’s approach described in
(Sekanina, 2004). Unlike in (Sekanina, 2004) we deal with the delay of
sorting networks. A genetic algorithm is used to design a program —
constructor (consisting of application-specific instructions) — that is
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Figure 5. Designing larger sorting networks from smaller sorting networks by means
of a constructor K

able to create a larger sorting network from a smaller one (the smallest
one is called the embryo). Then the constructor is applied on its results
in order to create a larger sorting network and so on. Algorithm 1 and
Figure 5 demonstrate this idea.

Algorithm 1:
Set time t = 0;
Create initial population of programs P(t);
Create sorting networks using programs from P(t);
Evaluate sorting networks;
while (termination condition is false) do
{

t = t+1;
P(t) = create new population using P(t–1);
Create sorting networks using programs from P(t);
Evaluate sorting networks;

}

The development is realized as follows. Consider that we have a 2-
input sorting network (i.e. N = 2 as seen in Fig. 5) and we are going
to evolve a program (constructor) that will create a 3-input sorting
network from the 2-input sorting network. The same program has to
be able to create a 4-input sorting network from the 3-input sorting
network and so on.

4.2. Representation and the Proposed Developmental
Scheme

Sorting networks are encoded as sequences of pairs of integers. For
instance, as Fig. 1 shows, the 3-input sorting network is represented
by the sequence of pairs (0, 1)(1, 2)(0, 1) indicating the ordering of
compare–swap operations over the inputs 0, 1 and 2. A constructor is
a sequence of instructions, each of which is encoded as three integers
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Table II. Instruction set utilized in development. “mod” denotes the modulo operation.

Instruction arg1 arg2 description

0: ModifyS a b c1 = (c1 + a) mod w, c2 = (c2 + b) mod w, cp = cp + 1,

np = np + 1

1: ModifyM a b c1 = (c1 + a) mod w, c2 = (c2 + b) mod w, cp = cp + 1,

ep = ep + 1, np = np + 1

2: CopyS k − copy w − k comparators, cp = cp + 1, np = np + w − k

3: CopyM k − copy w − k comparators, cp = cp + 1, ep = ep + w − k,

np = np + w − k

– operational code, argument 1 and argument 2. The representation
is similar to linear structures for genetic programming (Banzhaf et
al., 1998). Only two instructions are utilized: copy and modify. Table II
introduces their semantics, variants, operational codes and parameters.
The Modify instructions read the indices of inputs of a comparator and
add the values of their arguments to them. Modulo-operation ensures
that the created comparator remains inside the sorting network of a
given number of inputs. This type of instructions may be considered as
a “shift” of a comparator to another position preserving the ordering of
comparators. The Copy instructions copy some comparators (beginning
from the actual one) to the next instance. The number of comparators
to be copied depends on the instruction argument and the number of
inputs of the sorting network being created. The instruction ModifyS
(resp. CopyS) differs from ModifyM (resp. CopyM) in handling the
ep pointer. Note that we (as designers) designed these instructions for
this particular task. Hence we call the approach an application-specific
development.

A sequence representing sorting networks is implemented using a
variable-length array. A sequence representing the constructor is im-
plemented as a constant-length array. Its size is determined at the
beginning of evolution using our previous experience (Sekanina, 2004).
This size is not optimized.

Let c1 and c2 (i.e. the pair (c1, c2)) denote indices of inputs of a
comparator in embryo that is processed by an instruction from Ta-
ble II. Instructions utilize three pieces of information: (1) operation
codes and (2) argument values given by GA, and (3) w, which is the
number of inputs (width) of the currently constructed sorting network.
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Figure 6. Initialization of the development: (a) growing sorting network and (b)
chromosome, i.e. instructions in a constructor

This value must be inserted into the developmental process externally
(from environment). Three pointers are utilized in order to indicate the
current position in sequences:

− ep – pointer to the source sorting network (embryo pointer),

− np – pointer to the next comparator in a constructed network
(next-position pointer), and

− cp – constructor pointer.

As Fig. 6 shows, instructions of the constructor are sequentially
executed processing the comparator pointed by the embryo pointer
(ep). The comparators of the embryo are also processed sequentially.
Before execution of the first instruction, an auxiliary variable (e end)
is initialized by the value of np. This auxiliary value marks the end of
embryo and is invariable during actual application of the constructor.
The process of construction terminates when either all instructions of
the constructor are executed or the end of embryo is reached (i.e. ep =
e end). After a single application of a constructor the obtained sorting
network is evaluated. If we apply the constructor again, we obtain a
larger sorting network and so on. In such case, the pointers ep and
np possess their values resulted from the previous application; only
cp and e end are updated. Note that the sorting network obtained by
repeated application of the constructor possesses all the comparators
of its precursors.

The goal is to find such a constructor that will create valid sorting
networks with the minimal number of comparators and/or delay. Be-
cause the delay of constructed sorting networks should be minimized,
the following special condition has to be satisfied in order to execute
a Modify instruction: the result of Modify instruction is valid only in
case that c1 < c2 holds for the created comparator. Otherwise, the new
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Figure 7. Example of invalid result of Modify instruction

comparator is not included in the sorting network and the instruction
only updates the embryo pointer. Figure 7 shows an example of invalid
result of Modify instruction. Pointer ep determines a comparator that
will be used to create a comparator at position specified by np. How-
ever, the comparator is redundant. If accepted, the redundancy will
propagate to larger sorting networks, which will be ineffective too.

4.3. An Example of Two Steps of Development

Figure 8 shows an example of two applications of a constructor. The
horizontal sequence of numbers denotes the comparator positions. The
vertical sequence of numbers denotes indices of inputs of sorting net-
work. A rectangle surrounds the embryo. The vertical thin line sep-
arates the comparators created in the second application of the con-
structor. ep1 = 0 denotes the comparator pointed by embryo pointer,
np1 = 3 denotes next-position pointer and end1 = 3 denotes the end of
embryo before the first application of the constructor. Similarly, ep2 = 3
denotes the comparator pointed by embryo pointer, np2 = 8 denotes
next-position pointer and end2 = 8 denotes the end of embryo before
the second application of the constructor. Before any application of the
constructor the pointers ep and np are initialized to the values of ep1
and np1 respectively.

After execution of instructions [ModifyS 2 2] and [ModifyS 1 2],
comparators (2,3) and (1,3) are created in positions 3 and 4 (using the
comparator (0,1) at the position 0). The embryo pointer (ep) remains
unchanged and np = 5. Execution of [ModifyM 0 1] results in creating
comparator (0,2) at the position 5. Now, ep = 1 and np = 6. By
applying [ModifyS 2 1] on comparator (1,2) we obtain a new comparator
(3,3). However, such the comparator does not satisfy c1 < c2 condition
and hence it will not be included in the sorting network. ep and np
remain unchanged. [CopyM 3 1] instruction copies one comparator from
the position 1 to the position pointed by np = 6 (since we are creating
a 4-input sorting network and the first argument of CopyM instruction
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Figure 8. Example of the construction of sorting networks using constructor
[ModifyS 2 2][ModifyS 1 2][ModifyM 0 1][ModifyS 2 1][CopyM 3 1][CopyM 2 4]

is 3, the 4–3 results in 1 comparator to be copied – see Table II).
The instruction updates the pointers, so now ep = 2 and np = 7.
The [CopyM 2 4] should copy two comparators. Since there is only
one comparator before the end of embryo, only one comparator will
be copied and the pointers will be updated to ep = 3 and np = 8.
Because the end of embryo was reached and all the instructions of the
constructor were executed, the first application is finished.

The ep and np pointers now possess the values of ep2 and np2
and this is the starting configuration for the second application of the
constructor. Execution of instructions proceeds in the same manner.
Comparators will be created in positions 8–15. Note that during the
second application of the constructor the result of [ModifyS 2 1] is valid
and the comparator (3,4) will be created in position 11 from (1,3) in
position 4. Since we are now creating a 6-input sorting network, [CopyM
3 1] copies three comparators from the positions 4, 5 and 6. The last
instruction [CopyM 2 4] copies one comparator from the position 7
before the end of the second embryo and the second application of the
constructor is finished. The next applications would construct the 8-,
10-, 12-input sorting networks and so on.

4.4. Genetic Algorithm

A steady state genetic algorithm and a simple genetic algorithm imple-
mented using Galib (Wall, 1996) have been utilized. The GA operates
with constant-length chromosomes (programs) represented by triplets
of positive integers. Initial population is generated randomly. The prob-
abilities of uniform crossover and mutation and other parameters will
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be given together with the results in Section 5. The mutation operator
is applied on all offspring.

We would like to evolve arbitrarily large sorting networks. However,
because of problems with the scalability of fitness evaluation, only
several instances of the growing sorting network can be evaluated in
the fitness calculation process. Assume that we start with a 3-input
sorting network. In our case a candidate constructor is used to build
the 4-input, 5-input, 6-input and 7-input sorting networks from the
3-input embryo. The fitness value is calculated as follows:

fitness = f(4) + f(5) + f(6) + f(7),

where f(j) is the fitness value for a j-input sorting network. This value
is calculated using the zero–one principle as the number of input se-
quences of zeroes and ones sorted correctly. Hence 24+25+26+27 = 240
represents the best possible value that we could obtain. At the end of
evolution we have to test whether the evolved constructor is general,
i.e. whether it generates infinitely large sorting networks which sort
all possible input sequences. If a constructor is able to create a sorting
network for a sufficiently high N (N = 28 in our case) then we consider
the constructor as general.

The proposed developmental scheme can fully be defined using the
following parameters: w1, w max, dw and ew, which will be utilized
to characterize the results in Section 5. Let w1 denote the number of
inputs of the smallest sorting network that is constructed from ew-
input embryo in the fitness calculation process (i.e. the sorting network
created by the first application of constructor). Similarly w max de-
notes the largest sorting network constructed during fitness evaluation.
Let dw be a difference between the number of inputs of neighboring
networks created by a constructor. In this paper, dw is 1 or 2. Finally, it
is useful to define one more parameter, de, de = w1−ew. The following
parameters summarize the mentioned example: w1 = 4, w max = 7,
dw = 1, and ew = 3.

5. Experimental Results

This section summarizes the experiments that we performed. Each
experiment required setting up parameters of genetic algorithm (the
probability of crossover and mutation, population size, the number of
generations, etc.) and parameters of development (w1, w max, dw, and
ew). The quality of resulting sorting networks depends on both sets of
parameters. We measured the number of general constructors (NGC)
obtained out of 100 independent runs.
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Table III. Definition of labels for constructors in the form
gX-Yzzz ID

Symbols Description

X constructor length (the number of instructions)

Y embryo width (the number of inputs)

zzz odd/even/all (possible inputs)

ID identification

Figure 9. Embryos tested: (a) 2-input, (b) 3-input, (c) 4-input, (d) 4-input – another
type

The produced sorting networks will be characterized in terms of
comparators count and delay. Each constructor will be labeled by its
length (the number of instructions), size of utilized embryo and identifi-
cation. Moreover, we recognized that very interesting sorting networks
are produced in the case that only even-input (or odd-input) networks
are required. Hence constructors were evolved for the even, odd, and
even and odd1 number of inputs in growing sorting networks, which is
also included in the label as seen in Table III.

Three tables will summarize each experiment. The first table lists the
best constructors. The second table gives the number of compare–swap
components and the number of redundant comparators (in parenthe-
ses). Delay and the number of parallel layers in parentheses (that are
available after removal of redundant comparators) are given in the third
table. The best solution is typed italic. We experimented with various
types of embryo. Figure 9 shows the embryos that we utilized.

5.1. Evolving Sorting Networks

In the first set of experiments, the sorting networks with the even as
well as odd number of inputs were evolved from a three-input embryo. It
corresponds to setting: ew = 3, de = 1 and dw = 1. We used a simple
GA, operating with 60 individuals, with the probability of crossover

1 Odd and even is denoted as “all” in labels.
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Table IV. Examples of general constructors evolved for a 3-input embryo.

Constructor Instructions NGC

g3-3all [ModifyS 2 2] [ModifyS 1 1] [CopyM 3 2]

g3-3all 2 [ModifyS 1 1] [ModifyM 2 2] [CopyM 0 2] 100

g3-3all 3 [ModifyS 2 2] [ModifyS 1 1] [CopyM 0 3]

g4-3all [ModifyS 3 2] [ModifyS 2 2] [ModifyS 1 1] [CopyM 3 3] 100

g4-3all 2 [ModifyM 0 0] [ModifyS 1 1] [ModifyS 1 0] [CopyM 0 2]

(Parameters: ew = 3, de = 1, dw = 1.)

Figure 10. The insertion principle rediscovered using instructions: [ModifyS 2 2]
[ModifyS 1 1] [CopyM 3 2] or [ModifyS 3 2] [ModifyS 2 2] [ModifyS 1 1] [CopyM 3
3].

pc = 0.75 and the probability of mutation pm = 0.08. Results are
summarized in Tables IV, V, and VI.

The evolved constructors are very simple and of the same quality as
the conventional approach produces. In fact the conventional straight
insertion algorithm has been rediscovered (see Fig. 10). Some other
examples are given in Fig. 11. We were not able to improve the principle
of construction in this way. Hence we have tried to change parameters
of the development and GA as the next section illustrates.
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Table V. The number of comparators of sorting networks for constructors from Table IV. The
number of redundant comparators is given in parentheses.

N 4 5 6 7 8 9 10 11 12 13 14 15

conv. 6 10 15 21 28 36 45 55 66 78 91 105

g3-3all 6 10 15 21 28 36 45 55 66 78 91 105

g3-3all 2 7 12 18 25 33 42 52 63 75 88 102 117

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

g3-3all 3 8 14 21 29 38 48 59 71 84 98 113 129

(2) (4) (6) (8) (10) (12) (14) (16) (18) (20) (22) (24)

g4-3all 6 10 15 21 28 36 45 55 66 78 91 105

g4-3all 2 7 12 18 25 33 42 52 63 75 88 102 117

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

N 16 17 18 19 20 21 22 23 24 25 26 27

conv. 120 136 153 171 190 210 231 253 276 300 325 351

g3-3all 120 136 153 171 190 210 231 253 276 300 325 351

g3-3all 2 133 150 168 187 207 228 250 273 297 322 348 375

(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)

g3-3all 3 146 164 183 203 224 246 269 293 318 344 371 399

(26) (28) (30) (32) (34) (36) (38) (40) (42) (44) (46) (48)

g4-3all 120 136 153 171 190 210 231 253 276 300 325 351

g4-3all 2 133 150 168 187 207 228 250 273 297 322 348 375

(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)

5.2. Evolving Odd-input Sorting Networks

The constructed sorting networks were restricted to the odd number of
inputs. Surprisingly, the most interesting odd-input sorting networks
were generated by using an even-input embryo. We chose a 4-input
embryo, ew = 4, and parameters de = 1 and dw = 2. After some
experiments, the best results were produced by a steady-state genetic
algorithm with pc = 0.74 and pm = 0.1. Population consists of 400
individuals with overlapping 12 individuals. Table VII shows chromo-
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Table VI. Delay of sorting networks from Table IV. Parentheses show delay after removal of
redundant comparators.

N 4 5 6 7 8 9 10 11 12 13 14 15

conv. 5 7 9 11 13 15 17 19 21 23 25 27

g3-3all 5 7 9 11 13 15 17 19 21 23 25 27

g3-3all 2 7 11 15 19 23 27 31 35 39 43 47 51

(5) (7) (9) (11) (13) (15) (17) (19) (21) (23) (25) (27)

g3-3all 3 7 11 15 19 23 27 31 35 39 43 47 51

(5) (7) (9) (11) (13) (15) (17) (19) (21) (23) (25) (27)

g4-3all 5 7 9 11 13 15 17 19 21 23 25 27

g4-3all 2 6 9 12 15 18 21 24 27 30 33 36 39

(5) (7) (9) (11) (13) (15) (17) (19) (21) (23) (25) (27)

N 16 17 18 19 20 21 22 23 24 25 26 27

konv. 29 31 33 35 37 39 41 43 45 47 49 51

g3-3all 29 31 33 35 37 39 41 43 45 47 49 51

g3-3all 2 55 59 63 67 71 75 79 83 87 91 95 99

(29) (31) (33) (35) (37) (39) (41) (43) (45) (47) (49) (51)

g3-3all 3 55 59 63 67 71 75 79 83 87 91 95 99

(29) (31) (33) (35) (37) (39) (41) (43) (45) (47) (49) (51)

g4-3all 29 31 33 35 37 39 41 43 45 47 49 51

g4-3all 2 42 45 48 51 54 57 60 63 66 69 72 75

(29) (31) (33) (35) (37) (39) (41) (43) (45) (47) (49) (51)

somes of some evolved constructors2. As Table VIII indicates, we were
able to reduce the number of comparators substantially in this set of
experiments. Delays are given in Table IX.

If the number of comparators is measured then the best-evolved
sorting network is given in Fig. 12. In case of minimizing the delay,
the best solution is shown in Fig. 13. However, all the sorting networks
contain redundant comparators which make their delay unnecessarily

2 Operation codes are given instead of symbolic names according to Table II.
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Figure 11. Examples of growing sorting networks created using constructors: (a)
g4-3all 2, (b) g3-3all 2, (c) g3-3all 3

long. After their removal we can obtain the quality (delay) of the
conventional solution.

5.3. Evolving Even-input Sorting Networks

In the previous section we discovered better constructors than the con-
ventional approach offers for the odd-input sorting networks. This sec-
tion deals with discovered even-input sorting networks that are better
than conventional ones.

In contrast to the previous section, various types of embryos have
been confirmed as useful for constructing novel sorting networks. We
applied a simple genetic algorithm with pc = 0.7, pm = 0, 023 and
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Table VII. Constructors of odd-input sorting networks for a four-input embryo.

Constructor Instructions NGC

g8-4odd [0 2 2] [0 2 3] [1 3 3] [0 1 1] [0 4 0] [3 2 3] [3 0 4] [3 1 3]

g8-4odd 2 [0 2 2] [0 2 3] [1 3 3] [0 1 1] [3 4 2] [3 2 2] [3 2 2] [3 4 4] 41

g8-4odd 3 [0 2 2] [0 2 3] [0 3 3] [1 2 0] [0 1 1] [3 0 4] [0 3 3] [3 3 3]

g8-4odd 4 [0 2 2] [0 3 3] [0 2 2] [0 1 1] [0 2 2] [3 0 0] [3 3 2] [3 0 0]

g7-4odd [0 2 2] [0 3 2] [1 2 3] [0 3 2] [0 1 1] [3 0 1] [3 0 3]

g7-4odd 2 [0 2 2] [1 2 3] [0 3 2] [0 1 1] [0 2 1] [3 0 2] [3 4 0] 62

g7-4odd 3 [0 2 2] [1 2 3] [0 1 1] [0 3 2] [0 1 1] [3 3 2] [3 2 3]

g6-4odd [0 2 2] [0 2 3] [0 3 3] [1 1 2] [3 2 1] [3 3 3] 80

g6-4odd 2 [0 2 2] [1 2 3] [0 3 2] [0 1 1] [3 1 3] [3 3 4]

(Parameters: ew = 4, de = 1, dw = 2.)

Figure 12. Comparator-efficient odd-input sorting networks created by means of the
constructor g6-4odd 2. The embryo is marked.

population size 60. Tables X, XI and XII summarize the results for the
two-input embryo.

As Fig. 14 shows, the optimal 4-input embryo was created from a
2-input embryo after the first step of development.

The g8-4even 2 is one of the best constructors we have ever evolved.
This constructor uses a four-input embryo and produces sorting net-

jd.tex; 24/02/2005; 17:19; p.20



Evolutionary Design of Arbitrarily Large Sorting Networks Using Development 21

Table VIII. The number of comparators for odd-input sorting networks created using constructors
from Table VII.

N 5 7 9 11 13 15 17 19 21 23 25 27

conv. 10 21 36 55 78 105 136 171 210 253 300 351

g8-4odd 14 26 41 59 80 104 131 161 194 230 269 311

(5) (8) (11) (14) (17) (20) (23) (26) (29) (32) (35) (38)

g8-4odd 2 13 24 38 55 75 98 124 153 185 220 258 299

(4) (6) (8) (10) (12) (14) (16) (18) (20) (22) (24) (26)

g8-4odd 3 13 24 39 58 81 108 139 174 213 256 303 354

(4) (6) (9) (13) (18) (24) (31) (39) (48) (58) (69) (81)

g8-4odd 4 15 30 50 75 105 140 180 225 275 330 390 455

(6) (10) (15) (21) (28) (36) (45) (55) (66) (78) (91) (105)

g7-4odd 12 22 35 51 70 92 117 145 176 210 247 287

(3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

g7-4odd 2 12 23 38 57 80 107 138 173 212 255 302 353

(3) (5) (8) (12) (17) (23) (30) (38) (47) (57) (68) (80)

g7-4odd 3 13 25 41 61 85 113 145 181 221 265 313 365

(4) (7) (11) (16) (22) (29) (37) (46) (56) (67) (79) (92)

g6-4odd 13 24 38 55 75 98 124 153 185 220 258 299

(4) (6) (8) (10) (12) (14) (16) (18) (20) (22) (24) (26)

g6-4odd 2 12 22 35 51 70 92 117 145 176 210 247 287

(3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

works with a better comparator count and delay than the best con-
ventional solution. However, it contains redundant comparators that
have to be removed. Examples of constructors evolved from the 4-
input embryo (including g8-4even 2 ) are given in Table XIII. Other
parameters are summarized in Tables XIV and XV. Sorting networks
created using the best constructors are shown in Fig. 15 and 16.

We evolved two interesting constructors by using a three-input em-
bryo. They are not as good as the constructors utilizing a four-input
embryo. However, they still produce better results than the conven-
tional approach (see Tables XVI, XVII and XVIII). Examples of sorting
networks are given in Fig. 17.
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Table IX. Delay of odd-input sorting networks created using constructors from Table VII.

N 5 7 9 11 13 15 17 19 21 23 25 27

conv. 7 11 15 19 23 27 31 35 39 43 47 51

g8-4odd 11 18 25 32 39 46 53 60 67 74 81 88

(6) (12) (17) (22) (27) (32) (37) (42) (47) (52) (57) (62)

g8-4odd 2 10 16 22 28 34 40 46 52 58 64 70 76

(6) (12) (17) (22) (27) (32) (37) (42) (47) (52) (57) (62)

g8-4odd 3 10 16 22 28 37 45 53 61 70 80 90 100

(6) (12) (17) (22) (27) (32) (37) (42) (47) (52) (57) (62)

g8-4odd 4 11 19 27 35 43 51 59 67 75 83 91 99

(6) (11) (15) (19) (23) (27) (31) (35) (39) (43) (47) (51)

g7-4odd 9 14 19 24 29 34 39 44 49 54 59 64

(6) (12) (17) (22) (27) (32) (37) (42) (47) (52) (57) (62)

g7-4odd 2 9 16 23 30 37 44 51 58 65 72 79 86

(6) (12) (17) (22) (27) (32) (37) (42) (47) (52) (57) (62)

g7-4odd 3 10 17 24 31 38 45 52 59 66 73 80 87

(6) (12) (16) (20) (24) (28) (32) (36) (40) (44) (48) (52)

g6-4odd 10 16 22 28 34 40 46 52 58 65 70 76

(6) (12) (17) (22) (27) (32) (37) (42) (47) (52) (57) (62)

g6-4odd 2 9 14 19 24 29 34 39 44 49 54 59 64

(6) (12) (17) (22) (27) (32) (37) (42) (47) (52) (57) (62)

Table X. Constructors of even-input sorting networks utilizing a two-input embryo.

Constructor Instructions NGC

g9-2even [0 2 2] [0 1 2] [0 0 1] [1 1 1] [0 4 4] [3 3 2] [3 1 1] [1 1 2] [2 1 0] 14

g8-2even [0 2 2] [0 0 1] [0 1 2] [1 1 1] [3 0 2] [0 1 3] [3 0 0] [3 2 3] 25

g8-2even 2 [0 2 2] [0 1 2] [0 0 1] [1 1 1] [0 4 4] [3 0 1] [3 4 1] [1 2 3]

g6-2even [0 2 2] [0 1 1] [0 0 2] [0 2 2] [3 0 4] [3 0 0] 73

g6-2even 2 [0 2 2] [0 1 2] [0 0 1] [1 1 1] [3 1 2] [3 1 1]

(Parameters: ew = 2, de = 2, dw = 2.)

jd.tex; 24/02/2005; 17:19; p.22



Evolutionary Design of Arbitrarily Large Sorting Networks Using Development 23

Table XI. The number of comparators of even-input sorting networks created from a two-input
embryo using constructors given in Table X.

N 4 6 8 10 12 14 16 18 20 22 24 26 28

conv. 6 15 28 45 66 91 120 153 190 231 276 325 378

g9-2even

g8-2even 2 5 12 22 35 51 70 92 117 145 176 210 247 287

g6-2even 2

g8-2even 5 12 22 35 51 71 95 123 155 191 231 275 323

(0) (0) (0) (0) (0) (1) (3) (6) (10) (15) (21) (28) (36)

g6-2even 6 15 28 45 66 91 120 153 190 231 276 325 378

Table XII. Delay of even-input sorting networks created from a two-input embryo using constructors given
in Table X.

N 4 6 8 10 12 14 16 18 20 22 24 26 28

conv. 5 9 13 17 21 25 29 33 37 41 45 49 53

g9-2even

g8-2even 2 3 7 11 15 19 23 27 31 35 39 43 47 51

g6-2even 2

g8-2even 3 7 11 15 19 23 28 34 39 45 51 57 63

(3) (7) (11) (15) (19) (23) (27) (31) (35) (39) (43) (47) (51)

g6-2even 3 7 11 15 19 23 27 31 35 39 43 47 51

Table XIII. Constructors of even-input sorting networks utilizing a four-input embryo.

Constructor Instructions NGC

g8-4even [1 4 1] [0 0 1] [0 2 2] [0 0 1] [1 1 2] [0 3 2] [3 3 0] [3 3 2]

g8-4even 2 [1 4 4] [1 2 1] [0 4 3] [0 2 2] [0 3 3] [3 4 1] [0 2 2] [3 1 3] 41

g8-4even 3 [0 2 2] [0 4 4] [0 3 4] [1 2 3] [1 2 0] [3 4 2] [0 2 2] [3 4 4]

g7-4even [1 4 4] [1 2 2] [0 2 2] [0 3 3] [0 3 2] [3 2 0] [3 3 3] 46

(Parameters: ew = 4, de = 2, dw = 2.)
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Table XIV. The number of comparators of even-input sorting networks created using a
four-input embryo by means of constructors given in Table XIII.

N 6 8 10 12 14 16 18 20 22 24 26 28

conventional 15 28 45 66 91 120 153 190 231 276 325 378

g8-4even 13 24 38 55 75 98 124 153 185 220 258 299

g8-4even 2 13 24 38 55 75 98 124 153 185 220 258 299

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

g8-4even 3 13 24 38 55 75 98 124 153 185 220 258 299

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

g7-4even 13 24 38 55 75 98 124 153 185 220 258 299

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Table XV. Delay of even-input sorting networks created using a four-input embryo by means of
constructors given in Table XIII.

N 6 8 10 12 14 16 18 20 22 24 26 28

conventional 9 13 17 21 25 29 33 37 41 45 49 53

g8-4even 9 15 21 27 33 39 45 51 57 63 69 75

g8-4even 2 6 9 14 19 23 26 31 36 41 46 51 56

(6) (9) (12) (15) (18) (21) (24) (27) (30) (33) (36) (39)

g8-4even 3 7 12 17 22 27 32 37 42 47 52 57 62

(6) (9) (12) (15) (18) (21) (24) (27) (30) (33) (36) (39)

g7-4even 7 11 16 20 24 28 33 37 41 45 49 53

(7) (11) (15) (19) (23) (27) (31) (35) (39) (43) (47) (51)

Table XVI. Constructors of even-input sorting networks utilizing a
three-input embryo.

Constructor Instructions NGC

g6-3even [0 2 2] [0 1 2] [1 0 1] [0 2 1] [3 3 1] [3 2 4] 59

g6-3even 2 [0 2 2] [0 1 2] [0 0 1] [1 1 1] [3 4 4] [3 0 1]

(Parameters: ew = 3, de = 1, dw = 2.)
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Figure 13. Delay-efficient odd-input sorting networks created by means of the
constructor g8-4odd 4.

Table XVII. The number of comparators of even-input sorting networks created using a three-input embryo
by means of constructors given in Table XVI.

N 4 6 8 10 12 14 16 18 20 22 24 26 28

Conventional 6 15 28 45 66 91 120 153 190 231 276 325 378

g6-3even 8 16 27 41 58 78 101 127 156 188 223 261 302

(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

g6-3even 2 9 18 30 45 63 84 108 135 165 198 234 273 315

(3) (5) (7) (9) (11) (13) (15) (17) (19) (21) (23) (25) (27)

5.4. Improving Odd-input Sorting Networks

The presented evolutionary approach produced sorting networks with
better implementation cost (the number of comparators) than the con-
ventional approach for even-input as well as odd-input sorting net-
works. Delay of even-input sorting networks was also improved. How-
ever, in case of odd-input sorting networks, none of the presented
constructors is better than a conventional one in terms of delay.

We have discovered that the best-known constructor for even-input
sorting networks (g8-4even 2 ) can be utilized to improve delay in case
of odd-input networks. Figure 18 shows that by removing the bottom
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Figure 14. The most comparator-efficient as well as delay-efficient even-input sorting
networks created from a two-input embryo using constructors g9-2even, g8-2even 2
or g6-2even 2.

Table XVIII. Delay of even-input sorting networks created using a three-input embryo by means of
constructors given in Table XVI.

N 4 6 8 10 12 14 16 18 20 22 24 26 28

Conventional 5 9 13 17 21 25 29 33 37 41 45 49 53

g6-3even 6 10 14 18 22 26 30 34 38 42 46 50 54

(5) (9) (13) (17) (21) (25) (29) (33) (37) (41) (45) (49) (53)

g6-3even 2 7 12 17 22 27 32 37 42 47 52 57 62 67

(5) (9) (13) (17) (21) (25) (29) (33) (37) (41) (45) (49) (53)
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Figure 15. Efficient even-input sorting networks created using the constructor
g8-4even 2.

Figure 16. Efficient even-input sorting networks created using the constructor
g8-4even 3.
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Figure 17. Even-input sorting networks created using the constructor g6-3even.

Figure 18. Creating delay efficient odd-input sorting networks from even-input sort-
ing networks by removing the bottom line of comparators. The original six-input
sorting network: (0,1) (2,3) (0,2) (1,3) (1,2) (4,5) (4,5) (2,4) (3,5) (0,2) (1,3) (3,4)
(1,2). The new five-input sorting network: (0,1) (2,3) (0,2) (1,3) (1,2) (2,4) (0,2)
(1,3) (3,4) (1,2).

line together with “connected” comparators, the odd-input sorting net-
work is established. We verified the improvement of created sorting
networks for N ≤ 29.

5.5. Computational Effort

More than 10,000 independent runs of evolutionary algorithm were
performed. The number of generations needed for gaining a solution
varies from about 150 to many thousands. We have found out the limit
10,000 generations to be sufficient to get some solutions in a reasonable
time. If the evolution does not terminate successfully within this limit,
the evolutionary process is stopped.

Consider even-input sorting networks constructed from a 2-input
embryo. In this case, 58% of independent runs of evolutionary process
terminated successfully. The average number of generations is 2053.
Fig. 19 shows a typical example of the progress of average fitness of the
population along with the rise of fitness value of the best individual
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Figure 19. The best and average fitness value in a typical run of a simple GA for
the following settings: ew = 2, de = 2, dw = 2, pc = 0.7, pm = 0.023, 60 individuals
in population, 4 developmental steps for fitness calculation (fmax = 1376)

during evolution. This experiment worked with a simple genetic al-
gorithm, the crossover probability 0.7, the mutation probability 0.023
and for population size of 60 individuals. The fitness function con-
sidered four developmental steps, i.e. the maximum fitness value was
fmax = f(4)+f(6)+f(8)+f(10) = 24+26+28+210 = 1376, where f(n)
is the number of all possible sequences of zeroes and ones of n-input
sorting network.

5.6. Summary of Results for Each Category

Sorting networks with complete inputs: It is easy to evolve a
general constructor in this category. We rediscovered the principle of
the straight insertion algorithm. However, sorting of large data sets is
not efficient in this way because many comparators are required.

Odd-input sorting networks: Some constructors were evolved
that produce smaller sorting networks in terms of a comparator count
than the conventional insertion and selection method can offer. How-
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ever, it works only using a four-input embryonic network. The next
improvement can be done by removing redundant comparators that
are often generated by the constructors. We were not able to improve
delay in this category – the best constructor has reached the quality
of a conventional method. Surprisingly, it is possible to modify the
best even-input sorting networks in order to obtain odd-input sorting
networks whose delay is shorter than delay of conventional networks.

Even-input sorting networks: In this category various types of
embryos have generated interesting results. The usage of the two-input
embryo has led to a substantial reduction of the number of compara-
tors and a small reduction of delay. The constructors evolved from
a two-input embryo did not produce redundant comparators. On the
other hand, the constructors g8-4even 2 and g8-4even 3, evolved using
a four-input embryo, minimize the number of comparators as well as
delay substantially. However, first, it is necessary to remove redundant
comparators from the created networks. These constructors represent
the main contribution of this paper.

6. Discussion

We clearly demonstrated that the proposed evolutionary method com-
bined with development has improved the conventional design principle
not only for a single instance, but for all instances of our problem. In
order to illustrate the quality of evolved sorting networks, Table XIX
compares the best evolved sorting networks with common sequential
sorting algorithms – BubbleSort and QuickSort. We measured the mean
number of comparisons for ten thousands randomly generated input se-
quences of length N . Under this criterion, the evolved sorting networks
exhibit the best results.

All candidate constructors were evaluated using the zero–one prin-
ciple; however, only for a limited number of inputs. We found this
approach very efficient because about 50% of them are considered as
“general” (see NGC parameter in the previous tables). Although we
use the word “general” it is obvious that the evolved constructors have
not to be really general – the verification method we applied (i.e. the
evaluation of a constructor up to a sufficiently high N) is not a proof.
Furthermore, the size of constructors was not optimized. Next research
will be devoted to prove that the constructors are really general and
minimal.

The main feature of the proposed developmental system for genetic
algorithm is that a lot of problem-domain knowledge (such as the defini-
tion and use of copy and modify instructions) has been presented in its
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Table XIX. Confrontation of evolved sorting networks (generated by means of constructors
g8-4even 2 or g8-4even 3 ) with conventional sorting algorithms BubbleSort and QuickSort.
The table shows the mean number of comparisons required for sorting N elements.

N 3 4 5 6 7 8 9 10 11 12 13 14 15

Bsort 3 6 10 15 21 28 36 45 55 66 78 91 105

Qsort 9 15 24 33 42 52 63 74 85 96 108 120 132

SN - 5 - 12 - 22 - 35 - 51 - 70 -

N 16 17 18 19 20 21 22 23 24 25 26 27 28

Bsort 120 136 153 171 190 210 231 253 276 300 325 351 378

Qsort 144 157 170 183 196 209 222 236 249 263 277 290 305

SN 92 - 117 - 145 - 176 - 210 - 247 - 287

inductive bias. We do believe that the idea of evolving constructors for
infinitely growing objects is generally applicable. However, it is difficult
to define an embryo and appropriate domain knowledge for a particular
problem. It seems that designing an efficient developmental system is as
difficult as designing an efficient genetic algorithm for a given problem.

Except the instructions that we had to design for this particular
application manually and that GA had to put them together to make
a constructor, the proposed developmental scheme has utilized another
information – the size of the currently constructed network N . This
information is not a part of our artificial genetic code. Therefore, we can
understand it as a property of environment, which surrounds a growing
sorting network. It is obvious that as positional information is crucial
for biological development (Alberts et al., 1998), no correct sorting
network can be created without a correct N . In real biological systems
the interplay between a cell and its environment is very complex. In
our system the interplay practically does not exist. A growing sorting
network, for example, does not influence the value of N at all. We
are planning to develop more complex models of development for this
application in order to investigate whether the obtained results can be
improved.

Further research should be devoted to specifying a hardware recon-
figurable platform and applications that could benefit from growing
sorting networks (or similar growing digital circuits). A circuit should
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grow when it is required and get smaller when is not needed. It will also
be interesting to explore fault tolerance of growing sorting networks.

7. Conclusions

In this paper we described a method for constructing efficient larger
sorting networks from smaller ones. First we rediscovered a conven-
tional principle of straight insertion algorithm by means of genetic al-
gorithm endowed with an application-specific development. Later, very
efficient principles (programs) have been discovered by the same tech-
nique allowing us to reduce the size and delay of constructed odd/even-
input sorting networks.

The reported research represents the rare case in which a new scal-
able principle is discovered by an evolutionary algorithm. In most cases,
evolutionary algorithms are being used to find a single suitable solution.

We do believe that application-specific evolutionary algorithms en-
dowed with application-specific developmental systems will allow de-
signers to discover novel design principles for constructing some other
arbitrarily large systems in near future.
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