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ABSTRACT
We evolve heuristics to guide staged deepening search for the
hard game of FreeCell, obtaining top-notch solvers for this
NP-Complete, human-challenging puzzle. We first devise
several novel heuristic measures and then employ a Hillis-
style coevolutionary genetic algorithm to find efficient com-
binations of these heuristics. Our results significantly sur-
pass the best published solver to date by three distinct mea-
sures: 1) Number of search nodes is reduced by 87%; 2) time
to solution is reduced by 93%; and 3) average solution length
is reduced by 41%. Our top solver is the best published Free-
Cell player to date, solving 98% of the standard Microsoft
32K problem set, and also able to beat high-ranking human
players.
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Categories and Subject Descriptors
I.2.1 [Applications and Expert Systems]: Games; I.2.6
[Parameter learning]: Knowledge acquisition; I.2.8 [Problem
Solving, Control Methods, and Search]: Heuristic meth-
ods
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Keywords
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1. INTRODUCTION
Discrete puzzles, also known as single-player games, are an

excellent problem domain for artificial intelligence research,
because they can be parsimoniously described yet are often
hard to solve [28]. As such, puzzles have been the focus of
substantial research in AI during the past decades (e.g., [14,
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Figure 1: A FreeCell game configuration. Cascades:
Bottom 8 piles. Foundations: 4 upper-right piles.
FreeCells: 4 upper-left piles. Note that cascades are
not arranged according to suits, but foundations are.
Legal moves for current configuration: 1) moving 7♣
from the leftmost cascade to either the pile fourth
from the left (on top of the 8♦), or to the pile third
from the right (on top of the 8♥); 2) moving the
6♦ from the right cascade to the left one (on top of
the 7♣); and 3) moving any single card on top of a
cascade onto the empty FreeCell.

31]). Nonetheless, quite a few NP-Complete puzzles have re-
mained relatively neglected by academic researchers (see [21]
for a review).

A well-known, highly popular example within the domain
of discrete puzzles is the card game of FreeCell. Starting
with all cards randomly divided into k piles (called cas-
cades), the objective of the game is to move all cards onto
four different piles (called foundations)—one per
suit—arranged upwards from the ace until the king. Ad-
ditionally, there are initially empty cells (called FreeCells),
whose purpose is to aid with moving the cards. Only ex-
posed cards can be moved, either from FreeCells or founda-
tions. Legal move destinations include: a home cell, if all
previous (i.e., lower) cards are already there; empty Free-
Cells; and, on top of a next-highest card of opposite color in
a cascade (Figure 1). FreeCell was proven by Helmert to be
NP-Complete [16]. Computational complexity aside, many
(oft-frustrated) human players (including the authors) will
readily attest to the game’s hardness. The attainment of a
competent machine player would undoubtedly be considered
a human-competitive result.

FreeCell remained relatively obscure until it was included
in the Windows 95 operating system (and in all subsequent



versions), along with 32,000 problems—known as Microsoft
32K —all solvable but one (this latter, game #11982, was
proven to be unsolvable). Due to Microsoft’s move Free-
Cell has been claimed to be one of the world’s most popular
games [4]. The Microsoft version of the game comprises a
standard deck of 52 cards, 8 cascades, 4 foundations, and 4
FreeCells. Though limited in size this FreeCell version still
requires an enormous amount of search, due both to long
solutions and to large branching factors. Thus it remains
out of reach for optimal heuristic search algorithms, such
as A* and iterative deepening A* [10, 22], both considered
standard methods for solving difficult single-player games
(e.g., [20, 24]). FreeCell remains unsolvable even when pow-
erful enhancement techniques are employed, such as trans-
position tables [9, 33] and macro moves [23].

Despite there being numerous FreeCell solvers available
via the Web, few have been written up in the scientific lit-
erature. The best published solver to date is that of Heine-
man [15], able to solve 96% of Microsoft 32K using a hybrid
A* / hill-climbing search algorithm called staged deepening
(henceforth referred to as the HSD algorithm). The HSD al-
gorithm, along with a heuristic function, forms Heineman’s
FreeCell solver (we shall distinguish between the HSD algo-
rithm, the HSD heuristic, and the HSD solver—which in-
cludes both). Heineman’s system exploits several important
characteristics of the game, elaborated below.

Search algorithms for puzzles (as well as for other types of
problems) are strongly based on the notion of approximat-
ing the distance of a given configuration (or state) to the
problem’s solution (or goal). Such approximations are found
by means of a computationally efficient function, known as
the heuristic function. By applying this function to states
reachable from the current ones considered, it becomes pos-
sible to select more-promising alternatives earlier on in the
search process, possibly reducing the amount of search ef-
fort required to solve a given problem (typically measured
in number of nodes expanded). The putative reduction is
strongly tied to the quality of the heuristic function used:
employing a perfect function means simply “strolling” onto
the solution (i.e., no search de facto), while using a bad
function could render the search less efficient than totally
uninformed search, such as breadth-first search (BFS) or
depth-first search (DFS).

In a recent work Hauptman et al. [13] successfully ap-
plied genetic programming (GP) to evolving heuristic func-
tions for the Rush Hour puzzle—a hard, PSPACE-Complete
puzzle. The evolved heuristics dramatically reduced the
amount of nodes traversed by an enhanced “brute-force,”
iterative-deepening search algorithm. Herein, we employ a
genetic algorithm (GA) to obtaining solvers for the difficult
FreeCell puzzle. Note that although from a computational-
complexity point of view the Rush Hour puzzle is harder
(unless NP=PSPACE), search spaces induced by typical in-
stances of FreeCell tend to be substantially larger than those
of Rush Hour, and thus far more difficult to solve. This is
evidenced by the failure of standard search methods to solve
FreeCell, as opposed to their success in solving all 6x6 Rush
Hour problems without requiring any heuristics [13].

Our main set of experiments focused on evolving combi-
nations of hand-crafted heuristics we devised specifically for
FreeCell. We used these basic heuristics as building blocks in
a GA setting, where individuals represented the heuristics’
weights. We used Hillis-style competitive coevolution [18]

to simultaneously coevolve good solvers and various deals of
varying difficulty levels.

We will show that not only do we solve 98% of the Mi-
crosoft 32K problem set, a result far better than the best
solver on record, but we also do so significantly more effi-
ciently in terms of time to solve, space (number of nodes
expanded), and solution length (number of nodes along the
path to the correct solution found).

The contributions of this work are as follows:

1. Using a genetic algorithm we develop the strongest
known heuristic-based solver for the game of FreeCell.

2. Along the way we devise several novel heuristics for
FreeCell, many of which could be applied to other do-
mains and games.

3. We push the limit of what has been done with evo-
lution further, FreeCell being one of the most diffi-
cult single-player domains (if not the most difficult)
to which evolutionary algorithms have been applied to
date.

The paper is organized as follows: In the next section we
examine previous and related work. In Section 3 we describe
our method, followed by results in Section 4. Finally, we end
with concluding remarks and future work in Section 5.

2. PREVIOUS WORK
We hereby review the work done on FreeCell along with

several related topics.

2.1 Generalized Problem Solvers
Most reported work on FreeCell has been done in the

context of automated planning, a field of research in which
generalized problem solvers (known as planning systems or
planners) are constructed and tested across various bench-
mark puzzle domains. FreeCell was used as such a domain
both in several International Planning Competitions (IPCs)
(e.g., [27]), and in numerous attempts to construct state-
of-the-art planners reported in the literature (e.g., [8, 35]).
The version of the game we solve herein, played with a full
deck of 52 cards, is considered to be one of the most dif-
ficult domains for classical planning [4], evidenced by the
poor performance of general-purpose planners.

2.2 Domain-Specific Solvers
As stated above there are numerous solvers developed

specifically for FreeCell available via the web, the best of
which is that of Heineman [15]. Although it fails to solve
4% of Microsoft 32K, Heineman’s solver significantly out-
performs all other solvers in terms of both space and time.
We elaborate on this solver ahead.

2.3 Evolving Heuristics for Planning Systems
Many planning systems are strongly based on the notion

of heuristics (e.g., [5, 19]). However, relatively little work
has been done on evolving heuristics for planning.

Aler et al. [3] (see also [1, 2]) proposed a multi-strategy
approach for learning heuristics, embodied as ordered sets
of control rules (called policies), for search problems in AI
planning. Policies were evolved using a GP-based system
called EvoCK [2], whose initial population was generated by



a specialized learning algorithm, called Hamlet [6]. Their hy-
brid system, Hamlet-EvoCK, outperformed each of its sub-
systems on two benchmark problems often used in planning:
Blocks World and Logistics (solving 85% and 87% of the
problems in these domains, respectively). Note that both
these domains are considered relatively easy (e.g., compared
to FreeCell), as evidenced by the fact that the last time they
were included in IPCs was in 2002.

Levine and Humphreys [25], and later Levine et al. [26],
also evolved policies and used them as heuristic measures
to guide search for the Blocks World and Logistic domains.
Their system, L2Plan, included rule-level genetic program-
ming (for dealing with entire rules), as well as simple lo-
cal search to augment GP crossover and mutation. They
demonstrated some measure of success in these two domains,
although hand-coded policies sometimes outperformed the
evolved ones.

2.4 Evolving Heuristics for Specific Puzzles
Terashima-Maŕın et al. [34] compared two models to pro-

duce hyper-heuristics that solve two-dimensional regular and
irregular bin-packing problems, an NP-Hard problem do-
main. The learning process in both of the models produced
a rule-based mechanism to determine which heuristic to ap-
ply at each state. Both models outperformed the continual
use of a single heuristic. We note that their rules classify a
state and then apply a (single) heuristic, whereas we apply
a combination of heuristics at each state, which we believed
would perform better.

Hauptman et al. [12, 13] evolved heuristics for the Rush
Hour puzzle, a PSPACE-Complete problem domain. They
started with blind iterative deepening search (i.e., no heuris-
tics used) and compared it both to searching with hand-
crafted heuristics, as well as with evolved ones in the form
of policies. Hauptman et al. demonstrated that evolved
heuristics (with IDA* search) greatly reduce the number of
nodes required to solve instances of the Rush Hour puzzle,
as compared to the other two methods (blind search and
IDA* with hand-crafted heuristics).

The problem instances of Hauptman et al. involved rel-
atively small search spaces—they managed to solve their
entire initial test suite using blind search alone (although
2% of the problems violated their space requirement of 1.6
million nodes), and fared even better when using IDA* with
hand-crafted heuristics (with no evolution required). There-
fore, Hauptman et al. designed a coevolutionary algorithm
to find more-challenging instances.

Note that none of the deals in the Microsoft 32K prob-
lem set could be solved with blind search, nor with IDA*
equipped with hand-crafted heuristics, further evidencing
that FreeCell is far more difficult.

3. METHODS
Our work on the game of FreeCell progressed in five phases:

1. Constructing an iterative-deepening (uninformed) search
engine, endowed with several enhancements. Heuris-
tics were not used during this phase.

2. Guiding an IDA* search algorithm with the HSD al-
gorithm’s heuristic function (HSDH).

3. Implementation of the HSD algorithm (including the
heuristic function).

4. Design of several novel heuristics for FreeCell.

5. Learning weights for these novel heuristics using Hillis-
style coevolution.

3.1 Search Algorithms

3.1.1 Iterative Deepening
We initially implemented enhanced iterative deepening

search [22] as the heart of our game engine. This algorithm
may be viewed as a combination of BFS and DFS: Start-
ing from a given configuration (e.g., the initial state) and a
given depth bound, perform a DFS search for the goal state
through the graph of game states (in which vertices repre-
sent game configurations and edges represent legal moves).
If the goal is found, a path to it is returned; if not, the depth
bound is increased and the DFS phase is restarted, unless
the maximal depth bound has been reached, in which case
failure is reported. The basic idea behind ID (and IDA* de-
scribed below) is that of not storing the part of the search
space seen so far but just the path one is “moving” along.

An iterative deepening-based game engine receives as in-
put a FreeCell initial configuration (known as a deal), as
well as some run parameters, and outputs a solution (i.e.,
a list of moves) or an indication that the deal could not be
solved.

Transposition tables [9, 33] were an important enhance-
ment to our basic engine. Such tables are commonly used
to avoid visiting states that were previously visited (thus es-
caping possible loops) by means of a hash table storing all
states already encountered.

We observed that even when we permitted the search al-
gorithm to use all the available memory (2GB in our case, as
opposed to [13] where the node count was limited) virtually
all Microsoft 32K problems could not be solved. Hence, we
deduced that heuristics were essential for solving FreeCell
instances—uninformed search alone was insufficient.

3.1.2 Iterative Deepening A*
As stated above the HSD algorithm outperforms all other

solvers. Thus we implemented the heuristic function used by
HSD (described in Section 3.2). We used the HSD heuristic
with an iterative deepening A* (IDA*) search algorithm [22],
one of the most prominent methods for solving puzzles (e.g.,
[20, 24, 32]).

This algorithm operates similarly to iterative deepening,
except that in the DFS phase heuristic values are used to de-
termine the order by which children of a given node are vis-
ited (this method is generally known as move ordering [30]).
Move ordering is the only phase wherein the heuristic func-
tion is used—the open list structure is still sorted according
to depth alone.

IDA* underperformed where FreeCell was concerned: with-
out the hash table many instances (deals) were not solved,
while using the table resulted in memory overflow time and
again. Even using a strong heuristic function, IDA*—despite
its success in other difficult domains—yielded inadequate
performance: less than 1% of the deals we tackled were
solved, with all other instances resulting in memory over-
flow.

At this point we opted for employing the HSD algorithm in
its entirety, rather than merely the HSD heuristic function.



3.1.3 Staged Deepening
Staged deepening—used by the HSD algorithm—is based

on the observation that there is no need to store the entire
search space seen so far in memory, as is done with IDA*
search. This is so because of several significant characteris-
tics of FreeCell:

1. For most states there is more than one distinct permu-
tation of moves creating valid solutions. Hence, very
little backtracking is needed.

2. There is a relatively high percentage of irreversible
moves: according to the game’s rules a card placed in
a home cell cannot be moved again, and a card moved
from an unsorted pile cannot be returned to it.

3. If we start from game state s and reach state t after
performing k moves, and k is large enough, then there
is no longer any need to store the intermediate states
between s and t. The reason is that there is a solu-
tion from t (characteristic 1) and a high percentage
of the moves along the path are irreversible anyway
(characteristic 2).

Thus, the HSD algorithm may be viewed as a two-layered
IDA* with periodic memory cleanup. The two layers operate
in an interleaved fashion: 1) At each iteration, a local DFS
is performed from the head of the open list up to depth k,
with no heuristic evaluations, using a transposition table to
avoid loops; 2) Only nodes at precisely depth k are stored
in the open list,1 which is sorted according to the nodes’
heuristic values. In addition to these two interleaved layers,
whenever the transposition table reaches a predetermined
size, it is emptied entirely, and only the open list remains in
memory. Algorithm 1 present the pseudocode of the HSD
algorithm. N was empirically set by Heineman to 200,000.

Algorithm 1 HSD (Heineman’s staged deepening)

1: // Parameter: N – size of transposition table
2: T ← initial state
3: while T not empty do
4: s← remove best state in T according to heuristic value
5: U← all states exactly k moves away from s, discovered

by DFS
6: T ← merge(T, U)
7: // merge maintains T sorted by descending heuristic

value
8: // merge overwrites nodes in T with newer nodes from

U of equal heuristic value
9: if size of transposition table ≥ N then

10: clear transposition table
11: end if
12: if goal ∈ T then
13: return path to goal
14: end if
15: end while

Compared with IDA*, HSD uses less heuristic evaluations
(which are performed only on nodes entering the open list),
and does periodical memory cleanup, resulting in signifi-
cant reduction both in time and space requirements. Re-
duction is achieved through the second layer of the search,

1Note that since we are using DFS and not BFS we do not
find all such states.

which stores enough information to perform backtracking
(as stated above this does not occur often), and the size of
T is controlled by overwriting nodes.

Although the staged deepening algorithm does not guar-
antee an optimal solution, for difficult problems such as Free-
Cell finding a solution is sufficient, and there is typically no
requirement to find the optimal solution.

The HSD algorithm solved 96% of Microsoft 32K, as re-
ported by Heineman.

At this point we were at the limit of the current state-
of-the-art for FreeCell, and we turned to evolution to attain
better results. However we first needed to develop additional
heuristics for this domain.

3.2 FreeCell Heuristics
In this section we describe the heuristics we used, all of

which estimate the distance to the goal from a given game
configuration:

Heineman’s Staged Deepening Heusirtic (HSDH). This is
the heuristic used by the HSD algorithm: For each foun-
dation pile (recall that foundation piles are constructed in
ascending order), locate within the cascade piles the next
card that should be placed there, and count the cards found
on top of it. The returned value is the sum of this count for
all foundations. This number is multiplied by 2 if there are
no free FreeCells or empty foundation piles (reflecting the
fact that freeing the next card is harder in this case).

NumberWellPlaced. Count the number of well-placed cards
in cascade piles. A pile of cards is well placed if all its cards
are in descending order and alternating colors.

NumCardsNotAtFoundations. Count the number of cards
that are not at the foundation piles.

FreeCells. Count the number of free FreeCells and cas-
cades.

DifferenceFromTop. The average value of the top cards
in cascades, minus the average value of the top cards in
foundation piles.

LowestHomeCard. The highest possible card value (typ-
ically the king) minus the lowest card value in foundation
piles.

HighestHomeCard. The highest card value in foundation
piles.

DifferenceHome. The highest card value in the foundation
piles minus the lowest one.

SumOfBottomCards. Take the highest possible sum of
cards in the bottom of cascades (e.g., for 8 cascades, this
is 4 ∗ 13 + 4 ∗ 12 = 100), and subtract the sum of values
of cards actually located there. For example, in Figure 1,
SumOfBottomCards is 100−(2+3+9+11+6+2+8+11) =
48.

Table 1 lists the above heuristics.
Experiments with these heuristics demonstrated that each

separate heuristic (except for HSDH) was not good enough
to guide search for this difficult problem. Thus we turned
to evolution.

3.3 Evolving Heuristics for FreeCell
Combining several heuristics to get a more accurate one

is considered one of the most difficult problems in contem-
porary heuristics research [7, 32]. Herein we tackle a sub-
problem, that of combining heuristics by arithmetic means,
e.g., by summing their values or taking the maximal value.

The problem of combining heuristics is difficult primarily



Table 1: List of heuristics used by the genetic algorithm. R: Real or Integer.
R=HSDH Heineman’s staged deepening heuristic
R=NumberWellPlaced Number of well-placed cards in cascade piles
R=NumCardsNotAtFoundations Number of cards not at foundation piles
R=FreeCells Number of free FreeCells and cascades
R=DifferenceFromTop Average value of top cards in cascades minus average value of top cards in foundation

piles
R=LowestHomeCard Highest possible card value minus lowest card value in foundation piles
R=HighestHomeCard Highest card value in foundation piles
R=DifferenceHome Highest card value in foundation piles minus lowest one
R=SumOfBottomCards Highest possible card value multiplied by number of suites, minus sum of cascades’ bottom

card

because it entails traversing an extremely large search space
of possible numeric combinations and game configurations.
To tackle this problem we used a genetic algorithm. Below
we describe the elements of our setup in detail.

3.3.1 Genome
Each individual comprises 9 real values in the range [0, 1),

representing a linear combination of all 9 heuristics described
above (Table 1). Specifically, the heuristic value, H, desig-
nated by an evolving individual is defined asH =

∑9
i=1 wihi,

where wi is the ith weight specified by the genome, and hi is
the ith heuristic shown in Table 1. To obtain a more uniform
calculation we normalized all heuristic values to within the
range [0, 1] by maintaining a maximal possible value for each
heuristic, and dividing by it. For example, DifferenceHome
returns values in the range [0, 13] (13 being the difference
between the king’s value and the ace’s value), and the nor-
malized values are attained by dividing by 13.

3.3.2 GA Operators and Parameters
We applied GP-style evolution in the sense that first an

operator (reproduction, crossover, or mutation) was selected
with a given probability, and then one or two individuals
were selected in accordance with the operator chosen. We
used standard fitness-proportionate selection and
single-point crossover. Mutation was performed in a man-
ner analogous to bitwise mutation by replacing with inde-
pendent probability 0.1 a (real-valued) weight by a new ran-
dom value in the range [0, 1). We experimented with sev-
eral parameter settings, finally settling on: population size—
between 40 and 60, generation count—between 300 and 400,
reproduction probability—0.2, crossover probability—0.7, mu-
tation probability—0.1, and elitism set size—1. We used a
uniform distribution for selecting crossover points within in-
dividuals.

3.3.3 Training and Test Sets
The Microsoft 32K suite contains a random assortment of

problems (deals) of varying difficulty levels. In each of our
experiments 1,000 of these problems were randomly selected
for the training set and the remaining 31K were used as the
test set.

3.3.4 Fitness
An individual’s fitness score was obtained by perform-

ing full HSD search on deals taken from the training set,
with the individual used as the heuristic function. Fitness
equaled the average search-node reduction ratio. This ra-

tio was obtained by comparing the reduction in number of
search nodes—averaged over solved deals—with the aver-
age number of nodes when searching with the original HSD
heuristic (HSDH). For example, if the average reduction in
search was by 70% compared with HSDH (i.e., 70% less
nodes expanded on average), the fitness score was set to 0.7.
If a given deal was not solved within 2 minutes (a time limit
we set empirically), we assigned a fitness score of 0 to that
deal.

To distinguish between individuals that did not solve a
given deal and individuals that solved it but without reduc-
ing the amount of search (the latter case reflecting better
performance than the former), we assigned to the latter a
partial score of (1−FractionExcessNodes)/C, where Frac-
tionExcessNodes is the fraction of excessive nodes (values
greater than 1 were truncated to 1), and C is a constant
used to decrease the score relative to search reduction (set
empirically to 1000). For example, an excess of 30% would
yield a partial score of (1 − 0.3)/C; an excess of over 200%
would yield 0.

Because of the puzzle’s difficulty some deals were solved
by an evolving individual or by HSDH—but not by both,
thus rendering comparison (and fitness computation) prob-
lematic. To overcome this we imposed a penalty for unsuc-
cessful search: Problems not solved within 2 seconds were
counted as requiring 1000M search nodes. For example, if
HSDH did not solve within 2 seconds a deal that an evolv-
ing individual did solve using 500M nodes, the percent of
nodes reduced was computed as 50%. The 1000M value was
derived by taking the hardest problem solved by HSDH and
multiplying by two the number of nodes required to solve it.

An evolving solver’s fitness per single deal, fi, thus equals:

fi =





search-node reduction ratio
if solution found with node reduction

max{(1-FractionExcessNodes)/1000, 0}
if solution found without node reduction

0 if no solution found

and the total fitness, fs, is defined as the average fs =
1/N

∑N
i=1 fi. Initially we computed fitness by using a con-

stant number, N , of deals (set to 10 to allow diversity while
avoiding prolonged evaluations), which were chosen randomly
from the training set. However, as the test set was large,
fitness scores fluctuated wildly and improvement proved dif-
ficult. To overcome this problem we turned to coevolution.



3.4 Hillis-Style Coevolution
We used Hillis-style of coevolution wherein a population of

solutions coevolves alongside a population of problems [18].
The basic idea is that neither population should stagnate:
As solvers become more adept at solving certain problems
these latter do not remain in the problem set (as with a
simple GA) but are rather removed from the population of
problems—which itself evolves. In this form of competitive
coevolution the fitness of one population is inversely related
to the fitness of the other population.

In our coevolutionary scenario the first population com-
prises the solvers, as described above. In the second popu-
lation an individual represents a set of FreeCell deals. Thus
a “hard”-to-solve individual in this latter, problem popula-
tion will contain various deals of varying difficulty levels.
This multi-deal individual makes life harder for the evolv-
ing solvers: They must maintain a consistent level of play
over several deals. With single-deal individuals, which we
initially experimented with, either the solvers did not im-
prove if the deal population evolved every generation (i.e.,
too fast), or the solvers became adept at solving certain
deals and failed on others if the deal population evolved
more slowly (i.e., every k generations, for a given k > 1).

The genome and genetic operators of the solver population
were identical to those defined above.

The genome of an individual in the deal population con-
tained 6 FreeCell deals, represented as integer-valued in-
dexes from the set {v1, v2, . . . , v1000}, where vi is a ran-
dom index in the range [1, 32000]. We applied GP-style
evolution in the sense that first an operator (reproduction,
crossover, or mutation) was selected with a given probabil-
ity, and then one or two individuals were selected in accor-
dance with the operator chosen. We used standard fitness-
proportionate selection and single-point crossover. Mutation
was performed in a manner analogous to bitwise mutation
by replacing with independent probability 0.1 an (integer-
valued) index with a randomly chosen deal (index) from the
training set (i.e., {v1, v2, . . . , v1000}). We used a uniform
distribution for selecting crossover points within individuals
(Figure 2). Since the solvers needed more time to adapt to
deals we evolved the deal population every 5 solver genera-
tions (this slower evolutionary rate was set empirically). We
experimented with several parameter settings, finally set-
tling on: population size—between 40 and 60, generation
count—between 60 and 80, reproduction probability—0.2,
crossover probability—0.7, mutation probability—0.1, and
elitism set size—1.

Fitness was assigned to a solver by picking 2 individuals
in the deal population and attempting to solve all 12 deals
they represent. The fitness value was an average of all 12
deals, as described in Section 3.3.4.

Whenever a solver “ran” a deal individual’s 6 deals its
performance was maintained in order to derive the fitness
of the deal population. A deal individual’s fitness was de-
fined as the average number of nodes needed to solve the 6
deals, averaged over the solvers that “ran” this individual,
and divided by the average number of nodes when searching
with the original HSD heuristic. If a particular deal was not
solved by any of the solvers—a value of 1000M nodes was
assigned to it.

Coevolution outperformed HSD by a wide margin, solving
all but 525 instances of Microsoft 32K, and doing so using
significantly less time and space requirements. Addition-

Figure 2: Crossover and mutation of individuals in
the population of problems (deals).

ally, the solutions found were shorter and hence better. We
expand upon these results in the next section.

4. RESULTS
We evaluated the performance of evolved heuristics with

the same scoring method used for fitness computation, ex-
cept we averaged over all Microsoft 32K deals instead of over
the training set. We also measured average improvement in
time, solution length (number of nodes along the path to the
correct solution found), and number of solved instances of
Microsoft 32K, all compared to the HSD heuristic, HSDH.

The results for the test set (Microsoft 32K minus 1K train-
ing set) and for the entire Microsoft 32K set were very simi-
lar, and therefore we report only the latter. The runs proved
quite similar in their results, with the number of generations
being 150 on average. The first few generations took more
than 8 hours since most of the solvers did not solve most
of the boards within the 2-minute time limit. As evolution
progressed a generation came to take less than an hour.

We compared the following heuristics: HSDH (Section 3.2),
HighestHomeCard and DifferenceHome (Section 3.2)—both
of which proliferated in evolved individuals, and GA-FreeCell—
the top evolved individual.

We performed numerous experiments, but due to lack of
space we only report herein the main results, summarized in
Table 2. The HighestHomeCard and DifferenceHome heuris-
tics proved worse than HSD’s heuristic function in all of
the measures and therefore were not included in the tables.
For comparing unsolved deals we applied the 1000M penalty
scheme described in Section 3.3.4 to the node reduction mea-
sure. Since we also compared time to solve and solution
length, we applied the penalties of 9,000 seconds and 60,000
moves to these measures, respectively.

GA-FreeCell reduced the amount of search by 87%, solu-
tion time by 93%, and solution length by 41%, compared
to HSDH. In addition, GA-FreeCell solved 98% of Microsoft
32K, thus outperforming HSDH, the (now) previously top
solver, which solved only 96% of Microsoft 32K. Note that
although GA-FreeCell solves“only”2% more instances, these
2% are far harder to solve due to the long tail of the learning
curve.

One of our best solvers is the following: (+ (* Difference-
ToGoal 0.09) (* DifferenceToNextStepHome 0.01) (* Free-



Table 2: Average number of nodes, time (in sec-
onds), and solution length required to solve all Mi-
crosoft 32K problems, along with the number of
problems solved. Two sets of measures are given:
1) unsolved problems are assigned a penalty score
of 1000M nodes (as done during fitness computa-
tion), and 2) unsolved problems are excluded from
the count. HSDH is the heuristic function used by
HSD. GA-FreeCell is our top evolved solver.

Heuristic Nodes Time Length Solved
unsolved problems penalized

HSDH 75,713,179 709 4,680 30,859
GA-FreeCell 16,626,567 150 1,132 31,475

unsolved problems excluded
HSDH 1,780,216 44.45 255 30,859
GA-FreeCell 230,345 2.95 151 31,475

Table 3: The top three human players (when sorted
according to number of games played), compared
with HSDH and GA-FreeCell. Shown are number of
deals played and average time (in seconds) to solve.

Name Deals played Time Solved
sugar357 147,219 241 97.61%
volwin 146,380 190 96.00%
caralina 146,224 68 66.40%

HSDH 32,000 44 96.43%
GA-FreeCell 32,000 3 98.36%

Cells 0.0) (* DifferenceFromTop 0.77) (* LowestHomeCard
0.01) (* UppestHomeCard 0.08) (* NumOfArranged 0.01)
(* DifferenceHome 0.01) (* BottomCardsSum 0.02)). (In
other good solvers DifferenceFromTop was less weighty.)

How does our evolution-produced player fare against hu-
mans? The website www.freecell.net provides a ranking
of human FreeCell players, listing solution time and win rate
(alas, no data on number of boards examined by humans,
nor on solution lengths). This site contains thousands of
entries and has been active since 1996, so the data is reli-
able. It should be noted that the game engine used by this
site generates random deals in a somewhat different man-
ner than the one used to generate Microsoft 32K. Yet, since
the deals are randomly generated, it is reasonable to assume
that the deals are not biased in any way. Since statistics
regarding players who played sparsely are not reliable, we
focused on humans who played over 30K games—a figure
commensurate with our own.

The site statistics, which we downloaded on April 12,
2011, included results for 76 humans who met the minimal-
game requirement—all but two of whom exhibited a win rate
greater than 91%. Sorted according to number of games
played, the no. 1 player played 147,219 games, achieving
a win rate of 97.61%. This human is therefore pushed to
the second position, with our top player (98.36% win rate)
taking the first place (Table 3). If the statistics are sorted
according to win rate then our player assumes the no. 9 posi-
tion. Either way, it is clear that when compared with strong,
persistent, and consisted humans GA-FreeCell emerges as a
highly competitive player.

5. CONCLUDING REMARKS
We evolved a solver for the FreeCell puzzle, one of the

most difficult single-player domains (if not the most diffi-

cult) to which evolutionary algorithms have been applied to
date. GA-FreeCell beats the previous top published solver
by a wide margin on several measures. A simple genetic al-
gorithm proved adequate, the main thrust of our approach
being the designing of basic heuristics and their fruitful com-
bination.

There are a number of possible extensions to our work,
including:

1. The HSD algorithm, enhanced with evolved heuristics,
is more efficient than the original version. This is ev-
idenced both by the amount of search reduction and
the increased number of solved deals. It remains to be
determined whether the algorithm, when aided by evo-
lution, can outperform other widely used algorithms
(such as IDA*) in different domains. The fact that the
algorithm is based upon several properties of search
problems, such as the high percentage of irreversible
moves along with the small number of deadlocks, al-
ready points the way towards several domains. A good
candidate may be the Satellite game, previously stud-
ied in [11, 17].

2. Hand-crafted heuristics may themselves be improved
by evolution. This could be done by breaking them
into their elemental components and evolving their
combinations thereof.

3. Many single-agent search problems fall within the frame-
work of AI-planning problems (e.g., with ADL [29]).
However, using evolution in conjunction with these
techniques is not trivial and may require the use of
techniques such as GP policies [13].
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