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Abstract—We present a genetic programming system to industrial applications as there are many situations where a
evolve reusable heuristics for the two dimensional strip packing = series of rectangles of different sizes must be cut from a sheet

problem. The evolved heuristics are constructive, and decide f material (for exampl | r metal) while minimisin
both which piece to pack next and where to place that piece, \c/)vastgte al (for example, glass or metal) € sing

given the current partial solution. This work contributes to a ) ) o )
growing research area which represents a paradigm shift in  Indeed, many industrial problems are not limited to just
search methodologies. Instead of using evolutionary computa- rectangles (for example textiles, leather, etc) and this presents
tion to search a space of solutions, we employ it to search a spaceanother challenging problem [3]. There are many other
of heuristics for the problem. One of the motivations for this types of cutting and packing problems in one, two and

research area is that once a heuristic has been evolved, it can h di . A tvool f1h bl . ted
be reused on any new problem instance, meaning that the time ree aimensions. A typology o these problems IS presente

consuming evolutionary process need only be run once to obtain by Wascher et al. in [4]. As well as their dimensionality,
a solution to many problem instances. A second motivation is the problems are further classified into different types of
to research methods to automate the heuristic design process. It knapsack and bin packing problems, and by how similar the
has been stated in the literature that humans are very good at pieces are to each other.

identifying good building blocks for solution methods, however . .
the task of intelligently searching through all of the potential In this work, the rectangular pieces are free to rotate by 90

combinations of these components may be better suited to a degrees, and there can be no overlap of pieces. The guillotine
computer. With such tools at their disposal, heuristic designers version of this problem occurs where the cuts to the material

are then free to commit more of their time to the creative can only be made perpendicular to an edge, and must split
process of determining good components, while the computer o sheet into two pieces, then those same cutting rules apply

takes on some of the design process by intelligently combining ively t h Di H int ted h .
these components. The contribution of this paper is to show recursively 1o each piece. mowever, we are interested here in

that a genetic programming hyper-heuristic can be emp|0yed the non'guillotine version of the problem, which has no such
to automatically generate heuristics which are often better than constraint on how the pieces are cut.

the human-designed state of the art constructive heuristics, in The motivation behind this work is to develop a hyper-

a very well studied area. heuristic GP methodology which can automatically generate
Index Terms—Genetic Programming, Hyper-Heuristics, Two a novel heuristic for any class of problem instance. This
Dimensional Stock Cutting has the potential to eliminate the time consuming process of
manual problem analysis and heuristic building that a human

. INTRODUCTION programmer would carry out when faced with a new problem

Hyper-heuristics are defined as heuristics which seardStance or set of instances. Work on automatic heuristic
a space of heuristics, as opposed to searching a Spaceggperatlon has not been presented before for this problem.

solutions directly [1] (which, of course, is the conventional0WeVver, work employing such systems for on other problem

approach to employing evolutionary algorithms). We emplofomains has been published (see section 1lI-B). o
genetic programming (GP) as a hyper-heuristic to search the!N€T€ are two components to any constructive heuristic
space of heuristics that it is possible to construct from a set gped for the two dimensional strip packing problem. Many of
building blocks. The output is a set of automatically designeti€ heuristics created by humans are reliant on the presented
heuristics which can be reused on new problems, and whi@ider of the pieces before the packing begins. Often, the
are often superior to the best human designed heuristic. PI€cés are pre-ordered by size, which can achieve better
This paper presents such a hyper-heuristic system for thgSults [5]. However, it is not currently possible to say that
two dimensional strip packing problem, where a number dhis will result in a better packing, in the general case, than

rectangles must be placed onto a sheet with the objective dfandom ordering.
minimising the length of sheet that is required to accommo- Metaheuristics have been successfully employed to gener-

date the items. The sheet has a fixed width, and the requirBtf @ good ordering of the pieces before using a simple place-
length of the sheet is measured as the distance from tHENt Policy to pack them [5], [6]. These hybrid metaheuristic
base of the sheet to the piece edge furthest from the ba@@Proaches have shown that it is possible for one heuristic

This problem is known to be NP hard [2], and has man§P gain g.qod results on vande_r.rangeo!c mstances.because
of the ability to evolve a specific ordering of the pieces for a
Edmund K Burke, Matthew Hyde, Graham Kendall, and John Woodgiyen instance. However, they are still limited by the fact
ward are with the ASAP research group, in the School of Com; . . .
puter Science and IT, Nottingham University, Nottingham, UK. Emaithat their packing heuristic may not perform well on the
[ekb,mvh,gxk,jrw]@cs.nott.ac.uk instance regardless of the piece order, which would make it



difficult for the hybrid approach to find a good solution. TheWhile the specification of the components themselves is
heuristics we evolve do not suffer from the same limitationsiot automated, the methodology as a whole requires less
As we will show, they decide which piece to place next irhuman input than would be required to manually design fully
the partial solutionand where to place it. So the evolved functional heuristics. Fukunaga states that humans excel at
heuristics’ performance is independent of any piece order.identifying good potential components of methods to solve

The outline of this paper is as follows. In section Il weproblems, but combining them seems to be a more difficult
discuss some of the motivations and philosophy behind thisidertaking [16]. As problems in the real world become
line of research. In section Ill, we introduce the backgrounthore complex, identifying ways to automate this process
literature on GP, hyper-heuristics, and 2D strip packinghay become fundamental to the design of heuristics, because
approaches. Section IV presents our algorithm. Section ¥/ will become more difficult to manually combine their
describes the benchmark problem instances used in thstential components in ways that fully exploit the structure
paper, and section VI presents the results of the evolved a complex problem.

heuris'tics on new problem instances not used du.rin'g their There are a number of advantages of developing a method-
evolution. The results of the best evolved heuristic argjogy 1o automatically design heuristics. There is a possibil-
analysed and compared against recent results in the |Itel’atl-r{§ﬁ of discovering new heuristics which are unlikely to be
on benchmark instances. Finally, conclusions and ideas f{ented by a human analyst, due to their counterintuitive
future work are given in sections VIl and VIIl. nature. Another advantage is that a different heuristic can be
created for each subset of instances, meaning that the results
Il. MOTIVATION FOR THIS RESEARCHAREA obtained on each are more likely to be better than those
The ‘No Free Lunch’ theorem [7], [8] shows that aJobtained by one general heuristic. Human created heuristics

search algorithms have the same average performance o@&f designed to perform well over many problem instances,
all possible discrete functions. This would suggest that R€cause it would be too time consuming to manually develop
is not possible to develop a general search methodoloGyneW heu.rls'tlc specialised to every subset of m;tanges. A
for all optimisation problems as, over all possible discretBYPer-heuristic approach, such as the one described in this
functions, “no heuristic search algorithm is better than rarPaPer, can specialise heuristics to a given problem class, at
dom enumeration” [9]. However, it is important to recognisd'® €xtra human cost. The evolutionary algorithm need only
that this theorem imot saying that it is not possible to P& run again to produce a new heuristic.
build search methodologies which amore general than is  One of the long term goals of this research direction is
currently possible. It is often the case in practice that searéh making optimisation tools and decision support available
algorithms are developed for a specific group of problemsp organisations who currently solve their problems by hand,
for instance timetabling problems [10]. Often the algorithmsvithout the aid of computers. Examples of such organisations
are developed for a narrower set of problems within thatould be, for example, a primary school with a timetabling
group, for instance university course timetabling [11], [12]broblem, or a small delivery company with a routing prob-
or exam timetabling problems [13]. Indeed, algorithms caftem. It is often prohibitively expensive for them to employ
be specialised further by developing them for a specific oe team of analysts to build a bespoke heuristic, which
ganisation, whose timetabling problem may have a structurgould be specialised to their organisation’s problem. A more
very different to that of another organisation with differenigeneral system which automatically creates heuristics would
resources and constraints [14], [15]. At each of these levelse applicable to a range of organisations, potentially lowering
the use of domain knowledge can allow the algorithms tthe cost to each. It may be that there is a trade-off between the
exploit the structure of the set of problems in question. Thigenerality of such a system, and the quality of the solutions it
information can be used to intelligently guide a heuristiobtains. However, organisations for whom it is too expensive
search. to commission a bespoke decision support system, are often

In the majority of cases, humans develop heuristics whiahot interested in how close their solutions are to optimal.
exploit certain features of a problem domain, and this allowShey are simply interested in how much better the solutions
the heuristics to perform better on average than randoare than those they currently obtain by hand. For example,
search. Hyper-heuristic research is concerned with buildingpnsider a small organisation that currently solves its delivery
systems which can automatically exploit the structure of sacheduling problem by hand. This organisation may find
problem they are presented with, and create new heuristittgat the cost of commissioning a team of humans to design
for that problem, or intelligently choose from a set of prea heuristic decision support system, would be far greater
defined heuristics. In other words, hyper-heuristic researthan the benefit the company would get in terms of better
aims to automate the heuristic design process, or automateheduling solutions. However, the cost of purchasing an ‘off
the decision of which heuristics to employ for a new problenthe shelf’ decision support system which camtomatically

The subject of this paper is a hyper-heuristic systemdesign appropriate heuristics, may be lower than the resulting
which automatically designs heuristics, using a GP algorithmeduction in costs to the organisation. If the solutions are
The heuristics are automatically designed by using GP ood enough, and they are cheap enough, then it begins
intelligently combine a set of human defined componentso make economic sense for more organisations to take



advantage of heuristic search methodologies. Hyper-heuristaw-level heuristics, and the hyper-heuristic chooses the best
research aims to address the needs of organisations interegird or the best sequence from those. Another class of hyper-
in “good-enough soon-enough cheap-enougddlutions to heuristic, which has received less attention in the literature,
their optimisation problems [17]. Note that “good enough’generates low-level heuristics from a set of building blocks
often means solutions better than they currently obtain hyiven to it by the user. The aim of this class of hyper-heuristic
hand, “soon enough” typically means solutions delivered as$ to create a low-level heuristic from these building blocks.
least as quick as those obtained by hand, and “cheap enou@Xamples of other work in this growing research area are
usually means the cost of the system is low enough that ités follows. The ‘CLASS’ system presented in [16],[31] and

solutions add value to the organisation. [32] is an automatic generator of local search heuristics for
the SAT problem, and is competitive with human-designed
I1l. BACKGROUND heuristics. A different methodology for SAT is presented in

[33], where heuristics are more parsimonious and faster to
execute. One-dimensional bin packing heuristics are evolved
Genetic programming (GP) (see [18], [19], [20]) is ain [34], [35], [36], have superior performance to the human-
technique used to evolve populations of computer prograngigsigned best-fit heuristic, even on new instances much larger
represented as tree structures. An individual's performangean those in the training set. The approach is applied to the
is assessed by evaluating its performance at a specific tagivelling salesman problem [37], and evolving dispatching

and genetic operators such as crossover and mutation @ies for the job shop problem [38].
performed on the individuals between generations. A list of
GP parameters used in this paper is given in section IV-E

A. Genetic Programming

C. 2D Stock Cutting Approaches

1) Exact Methods:Gilmore and Gomory [39] first used
a linear programming approach in 1961 to solve small size
Hyper-heuristics are defined as heuristics that searchpaoblem instances. Tree search procedures have been em-
space of heuristics, as opposed to searching a space ptdyed more recently to produce optimal solutions for small
solutions directly [1]. Research in this area is motivatethstances of the 2D guillotine stock cutting problem [40] and
by the goal of raising the level of generality at which2D non-guillotine stock cutting problem [41]. The method
optimisation systems can operate [17], and by the assertiosed in [40] has since been improved in [42] and [43]. It is
that in many real-world problem domains, there are userscognised that these methods cannot provide good results
who are interested ifigood-enough, soon-enough, cheap-for large instances. For example, the largest instance used
enough” solutions to their search problems, rather thaim both [42] and [43] is 60 pieces. For larger instances,
optimal solutions [17]. In practice, this means researchintherefore, a heuristic approach must be introduced, which
systems that are capable of operating over a range of differannot guarantee the optimal solution, but can produce high
ent problem instances and sometimes even across problgoality results for much larger problems.
domains, without expensive manual parameter tuning, and2) Heuristic Methods:Baker et al. define a class of pack-
while still maintaining a certain level of solution quality. ing algorithms named ‘bottom up, left justified’ (BL) [44].
Many existing metaheuristics have been used successfulifiese algorithms maintain bottom left stability during the
as hyper-heuristics. Both a genetic algorithm [21] and eonstruction of the solution, meaning that all the pieces can
learning classifier system [22] have been used as hyperet be moved any further down or left from where they
heuristics for the one-dimensional bin packing problem. Are positioned. The heuristic presented in [44] has come
genetic algorithm with an adaptive length chromosome artd be named ‘bottom-left-fill' (BLF) because it places each
a tabu list was used in [23] as a hyper-heuristic. A casgiece in turn into the lowest available position, including any
based reasoning hyper-heuristic is used in [24] for both exafimoles’ in the solution, and then left justifying it. While this
timetabling and course timetabling. Simulated annealing tseuristic is intuitively simple, implementations are often not
employed as a hyper-heuristic in [25] for the shipper rationakfficient because of the difficulty in analysing the holes in
isation problem. A tabu search hyper-heuristic [26] is showthe solution for the points that a piece can be placed [45].
to be general enough to be applied to two very differenChazelle presents an optimal method for determining the
domains: nurse scheduling and university course timetablingrdered list of points that a piece can be put into, using
A graph based hyper-heuristic for timetabling problems ia ‘spring’ representation to analyse the structure of the holes
presented in [27]. Three new hyper-heuristic architecturgg5].
are presented in [28], treating mutational and hill climbing These heuristics take, as input, a list of pieces, and the
low-level heuristics separately. A choice function has alspesults rely heavily on the pieces being in a ‘good’ order
been employed as a hyper-heuristic, to rank the low-lev§#4]. Theoretical work presented by Brown et al. [46] shows
heuristics and choose the best [29]. A distributed choicie lower bounds for online algorithms both for pre-ordered
function hyper-heuristic is presented in [30]. piece lists by decreasing height and width, and non pre-
The common theme to the hyper-heuristic research meardered lists. Results in [5] have shown that pre-ordering
tioned above is that all of the approaches are given a setthie pieces by decreasing width or decreasing height before

B. Hyper-Heuristics



applying BL or BLF results in performance increases ofiny properties of the new pieces. For example, if the slicing
between 5% and 10%. tree defines a cut between piece one and piece nine, then this
Zhang et al [47] use a recursive algorithm, running ireut will blindly be made in the new instance even if these
O(n®) time, to create good strip packing solutions, basegieces now have wildly different sizes. A heuristic would
on the ‘divide and conquer’ principle. Finally, two heuristicsconsider the piece sizes and the spaces available before
for the strip cutting problem with sequencing constraint argaking a decision.
presented by Rinaldi and Franz [48], based on a mixed Hopper and Turton [5] compare the performance of several
integer linear programming formulation of the problem.  metaheuristic approaches for evolving the piece order, each
Recently, a ‘best-fit’ style heuristic was presented in [49)with both the BL constuctive algorithm of Jakobs [6], and
This algorithm is shown to produce better results thathe BLF algorithm of [44]. Simulated annealing, a genetic
previously published heuristic algorithms on benchmark inglgorithm, naive evolution, hill climbing, and random search
stances [49]. The details of this heuristic are given in sectioawre all evaluated on benchmark instances, and the results
IV-A. This heuristic is hybridised with metaheuristic methodsshow that better results are obtained when the algorithms
such as simulated annealing and tabu search in [50]. Tée combined with the BLF decoder. The genetic algorithm
methodology involves using best-fit to pack most of th&nd BLF decoder (GA+BLF) and the simulated annealing
pieces, and then using a metaheuristic method to iterativeipproach with BLF decoder (SA+BLF) are used as bench-
reorder the remaining pieces, and repack them with bottormarks in this paper.
left-fill. This approach obtains significantly better results than Other approaches start with a solution and iteratively
previously published methodologies, on almost all of thémprove it, rather than heuristically constructing a solution.
benchmark problems. We use the non-hybridised version bhi and Chan [55] and Faina [56] both use a simulated
best-fit for comparison in this paper, because our evolveshnealing approach in this way, and achieve good results on
heuristics are contructive, and best-fit is the best humaroblems of small size. Also, Bortfeldt [57] uses a GA which
created constructive heuristic in the literature. operates directly on the representations of strip packing

3) Metaheuristic MethodsMetaheuristics have been suc-solutions.
cessfully employed to evolve a good ordering of pieces for A reactive greedy randomised adaptive search procedure
a simple heuristic to pack. For example, Jakobs [6] uses(eeactive GRASP) is presented in [58] for the two di-
genetic algorithm to evolve a sequence of pieces for a simplerensional strip packing problem. The method involves a
variant of the BL heuristic. This variant packs each piece bgonstructive phase and a subsequent iterative improvement
initially placing it in the top right of the sheet and repeatingphase. To obtain the final overall algorithm, four parameters
the cycle of moving it down as far as it will go, and thenwere chosen with the results from a computational study,
left as far as it will go. Liu and Teng [51] proposed a simpleusing some of the problem sets used in the paper. First,
BL heuristic to use with a genetic algorithm that evolves thene of four methods of selecting the next piece to pack is
order of pieces. Their heuristic moves the piece down and tdhosen. Second, a method of randomising the piece selection
the left, but as soon as the piece can move down it is alloweésl chosen from a choice of four. Third, there are five
to do so. However, using a BL approach with a metaheuristiptions for choosing a parametér which is used in the
to evolve the piece order is somewhat limited, for example itandomisation method, and finally there are four choices for
is shown in [44], [52] that, for certain instances, there is nthe iterative improvement algorithm after the construction
sequence that can be given to the BLF heuristic that resuftbase is complete. The method is a complex algorithm with
in the optimal solution. many parameters, which are chosen by hand.

Ramesh Babu and Ramesh Babu [53] use a genetic algoBelov et al. have obtained arguably the best results in
rithm in the same way as Jakobs, to evolve an order of pieceabe literature for this problem [52]. Their ‘SVC’ algorithm
but use a slightly different heuristic to pack the pieces, and based on an iterative process, repeatedly applying one
different genetic algorithm parameters, improving on Jakobsonstructive heuristic, ‘SubKP’, to the problem, each time
results. updating certain parameters that guide its packing. The

Valenzuela and Wang [54] employ a genetic algorithniesults obtained are very similar to those obtained by the
for the guillotine variant of the problem. They use a lineaGRASP method. They obtain the same overall result on
representation of a slicing tree as the chromosome. Tiige ‘C’, ‘N’ and ‘T’ instances of Hopper and Turton, but
slicing tree determines the order that the guillotine cuts af@VC obtains a slightly better result on ten instance sets
made and between which pieces. The slicing trees bearfrfam Berkey and Wang, and Martello and Vigo. Together,
similarity with the GP trees in this paper, which represenVC(SubKP) and the reactive GRASP method represent the
heuristics. The slicing trees are not heuristics however, théjate of the art in the literature, and SVC(SubKP) seems to
only have relevance to the instance they are applied to, whiteork better for larger instances [52].

a heuristic dynamically takes into account the piece sizes of We compare with the results of the reactive GRASP in

an instance before making a judgement on where to placesaction VI, because they represent some of the best in the
piece. If the pattern of cuts dictated by the slicing tree werliterature, and their reported results cover all of the data sets
to be applied to a new instance, the pattern does not considleat we have used here. It must be noted however that the



aims of the hyper-heuristic methodology presented in thi® it. However, in contrast, best-fit only considers one slot
paper differ in certain respects from the aims of other worfor the pieces, whereas the heuristics evolved in this paper
in the literature. considerall slots. We also give our evolved heuristics three
The aim of the vast majority of the literature is to generatattempts at packing, once with each placement policy, as is
good quality solutions. The aim of this paper is to focushe case with best-fit.
on a research method capable of generating good quality
heuristics Thg quality of the r'esults'obtgined by the autog Representation of the Problem
matically designed heuristics is of high importance, but we L , )
do not aim only for better results than the state of the art hand OUr Nyper-heuristic system evolves a constructive heuris-
crafted heuristics. Therefore, the contribution of this paper f&¢: Which considers the strip packing problem to be a
to show that automatically generated constructive heuristi€§€duence of steps, where a piece must be placed at each step.
can obtain results in the same region as the current state’dfeVery Step, the heuristic chooses a piece, and the position
the art human developed heuristics in two dimensional strﬁ9 place it, accordmg to the_state of the sheet _and the pieces
packing [58], [52], which use a constructive phased an already placed on |t‘. To ,th|s end, the sheet is .repre_sented
iterative phase. We also show that the automatically geftS @ Set of dynamic ‘slots’, the number and configuration of
erated constructive heuristics can obtain better results th4ffich will change at every step. Each slot has a height (the

the human designed state of the art constructive heuristfiStance from the base of the sheet to the base of the bin), a
presented in [49]. lateral position, and a width. Each slot represents a position

in the solution where a piece can be placed, and the slot

structure is refreshed after a piece is placed.

. . . . . At the beginning of the packing process the sheet will
n _se_ctlon IV-A, we explain the functionality of the best-fit be represented as just one slot, with height zero and width

heur!st!c from [49].' [50], to which We compare our eVOIVE_"dequal to the width of the sheet. As an example, figure 1

heuristics, and Wh'.Ch provides the |n§p|rat|on for our pgckm hows the slot configuration (two slots, with different heights

framework. In section IV-B, we explain the representation o nd widths) when one piece has been placed onto the sheet

the problem that we use, and how it is updated each M2 the lower left corner. The slots are shown by horizontal

piece is pla}ced iqto the slolutio'n. Section IV-C explains hOanes, and the left and right limits of the slot are shown by
the lheurls_tchdeudeishlch plecE to pack HIEXt. anc_j Wh%ﬁack squares. The dashed line extending from the highest
to place it. A step by step packing example is given . signifies that the width of the slot extends beyond the

secthn IV-D to furthe_r .clarlfy this process. Section IV'.E_to of the piece and continues until it reaches the right hand
explains how the heuristics themselves are evolved, detaﬂug e of the sheet

the GP parameters and the method by which the heuristicsFigures 1-4 show a step by step example of three more

are trained. pieces being packed and how the slot structure changes as
each piece is packed. Figure 2 shows the slot structure after a
A. The Best-Fit Heuristic second piece has been placed into the lower right corner. One
The best-fit heuristic [49] is explained here because {tan observe that the bold black horizontal lines represent the
provides the inspiration for the framework described iighest horizontal surfaces at any given horizontal position
section IV-C and figure 5. We also compare our evolveth the packing. The slots are defined by these black lines,
heuristics to this heuristic in the resuts section (VI). by extending their widths in both directions to the nearest
The heuristic returns the result of three separate attemptartical edge of a piece or the edge of the sheet (this is
at packing, once with each of three placement policies. Fehown by the dashed lines). There are now three slots in the
each policy, the pieces are packed one at a time, each ingartial solution.
the current lowest available slot on the sheet. The piecesFigure 3 shows the slot structure after a piece has been
are free to be rotated b90°, and the piece chosen to beplaced into the lower left corner of the lowest slot. There are
packed is the one which fills the most of the width of thenow four slots, and one can see that the widths of the slots
slot. Note that the piece can be placed in the left or righixtend as far as the nearest vertical edge in both directions.
sides of the slot, and it is the current placement policy thaifter the fourth piece has been placed into the second highest
determines which side the piece is placed. The first placemesiot, figure 4 shows the slot structure. There are now two
policy is to always put the piece into the lower left corneslots, as the height of the fourth piece matches that of its
of the slot. The second policy is to put the piece next to theeighbour to the right. As the fourth piece hangs over the
tallest neighbouring piece. Finally, the third policy is to putight edge of the piece below it, the narrowest slot from figure
the piece next to the shortest neighbouring piece. The thr8es not generated this time, as the surface is no longer the
policies result in different solutions, and the best of the threleighest at this horizontal position.
solutions is returned as the result of the heuristic. The slot structure is refreshed after each piece is placed,
Our evolved heuristics pack the pieces in a similar way tand the process is analogous to pointing a laser vertically
the best-fit heuristic, because all the pieces are considered flmwnwards onto the solution and sweeping it from left to
packing at each step, not just the first in the sequence giveght. All of the surfaces hit by the laser become the bold

IV. METHODOLOGY



. . . TABLE |
black horizontal lines, and from these the slots are defineds,e runcrions AND TERMINALS AND DESCRIPTIONS OF THE VALUES

by extending them left and right to the nearest vertical edges. THEY RETURN
Name Label | Description
bal —
+ + Add two inpus
C. How the Heuristic Decides Where to Put a Piece - - | Subtract second input from first input
* * Multiply two inputs
This section is a general explanation of the process by % % | Protected divide function
. . . . . - Width W The width of the piece
which the heuristic decides which piece to pack next antt——fgignt H | The height of the piece

where to put it. This is also summarised in the pseudocofie  Area A The area of the piece

of figure 5. Section 1V-D then goes into more detail on this IS'O\iv!geiiigi‘tﬂ fAF/'L gl'?rt hEightvb relative t?] balse of she_‘?t -
process, using a specific example. Slot Width Left | S ifference between the slot and piece widtAs

] . ) ) . Sheet Width | SHW | Width of the sheet
A piece can adopt two orientations in a slot. Given @ Sheet Height | SHH | Height of optimum solution multiplied by 1.5

partial solution, we will refer to a combination of piece, slot Constant ERC | Ephemeral random constant
and orientation as an ‘allocation’. Therefore, there are two

allocations to consider for each piece and slot combination,

provided that the piece’s width in each orientation is smalld?. A packing example

than the width of the slot. An allocation therefore represents Tpis section works through an example of how the heuris-

one of the set of choices (of a piece and where to put it) that@ chooses a piece from those which remain to be packed,
heuristic could make at the given decision step. A heuristigq \where to put it in the partial solution. It goes into

in this hyper-heuristic system is a function that rates eag{riher detail than section IV-C. The heuristic we will use
aIIocatipn. The heuristic is evaluat_ed once for each allocatiqR this example is shown in figure 6. It consists of nodes
to obtain a score for each allocation. from the GP function and terminal set shown in table I.
The heuristic scores an allocation by taking into accourt heuristic in the population could contain any subset of
a number of its features, which are represented as the @R nodes available. Recall that the heuristic performs three
terminals shown in the lower six rows of table I. There arQompiete packingsl one for each piacement p0||Cy (described
three terminal values describing the piece width (W), heighf section IV-A), and returns the best solution of the three.
(H), and area (A) in its given orientation. There are tworhjs example will use the first placement policy, where the
representing the slot width (SW) and the slot height (SH), anslece is always put into the lower left corner of the slot.
one which represents the horizontal space left in the slot ﬁor the other two p|acement po|icieS, the same method0|ogy
the piece were to be put in (SWL). The sheet dimensions &j& used, but the rules of the other placement policies will
represented by terminals for the sheet width (SHW) and shegdvern whether the piece is placed into the left or right of
height (SHH). The sheet height is calculated as the heigiHe s|ot.
of the optimum soltion multiplied by 1.5. Constants are e will use the heuristic shown in figure 6 to choose a
included for the heuristics to use, in the form of ephemer%iece from those Wh|Ch remain to be packed (Shown in figure
random constants, detailed in [18]. 7) and choose where to place it in the partial solution shown
For each possible allocation, the values of the terminala figure 2. The partial solution shows that two pieces have
are calculated, and the heuristic is evaluated. The allocati@iready been packed by the heuristic, one to the left and one
for which the heuristic returns the highest value is deemed to the right. We do not show this process, because it is the
be the best, and therefore that allocation is performed on teame as the one we will explain, and the example will be
solution at the current step. In other words, the piece fromhore descriptive if we show the process in the middle of the
the allocation is put in the slot from the allocation, in thepacking. There are three slots in the partial solution, which
orientation dictated by the allocation. This process is showare defined by the pieces already packed.
in the example given in section IV-D. For each placement policy, the algorithm takes each piece
In a similar way to the human created best-fit heuristiin turn, and evaluates the tree for every possible allocation of
(see section IV-A), an evolved heuristic obtains a result bthat piece. So, first we will consider piece one from figure 7.
returning the best of three complete attempts at packing, oAepiece can be placed into a slot in either orientation, as long
with each of three placement policies. When an allocation has it does not exceed the width of the slot. Piece one does not
been chosen by the heuristic, the piece can either be placedteed the width of any of the slots, so it can be considered
in the left or right of the chosen slot. The location of thefor allocation into all three slots. Figure 8 shows these six
piece is determined by the current packing policy. The firstalid allocations for piece one in the partial solution, labelled
placement policy is to always put the piece into the lower lefA to F. Each of these six allocations will receive a score,
corner of the slot. The second policy is to put the piece nexibtained by evaluating the tree once for each allocation. The
to the tallest neighbouring piece. Finally, the third policy igree will give a different score for each allocation because the
to put the piece next to the shortest neighbouring piece. Ti&P terminal nodes will evaluate to different values depending
three policies result in different solutions, and the best of then the features of the allocation. One can see that two of
three solutions is returned as the result of the heuristic. these six allocations represent placing the piece suspended
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Fig. 1. The two slots after one piece has been packed, the highest Fig. 2. The new slot extends out to the left, as far as the edge of the
slot extendsout to the right as far as the edge of the sheet first piece
E -------------------------- -ﬁ . .
..

Fig. 3. There are now four slots after the third piece is placed, the Fig. 4. When the fourth piece is placed, two slots remain, because
black squares show the limits of the slot width the height of the piece matches that of the piece to its right

FOR each of three placement policies
WHILE pieces exist to be packed
IF at least one piece can fit in any slot
FOR each allocation
evaluate heuristic on allocation
obtain a score from the evaluation
save highest scoring allocation
END FOR
perform the best allocation on the solution
END IF
update slot structure
END WHILE END FOR
RETURN best solution from the three placement policies

Fig. 5. Pseudo code showing the overall program structure within which a heuristic operates. The packing
policies are explained in section IV-A
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Fig. 7. The pieces we will consider for packing
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Fig. 8. All of the places where piece one from figure 7 can go

T o

1

—15—# 55 f 30 |

Fig. 9. Allocation A from figure 8 in detail
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Fig. 10. Allocation B from figure 8 in detail

in the middle of the solution, with no piece below it. This is
permitted by the representation, because of the possibility of
an even wider piece being chosen to be placed across a gap,
and we expect a good evolved heuristic will never choose
such an allocation when it can be placed further down in the
solution.

The process of evaluating the tree is explained here, by
taking the examples of allocations A and B from figure 8.
Figure 9 shows allocation A in detail. To evaluate the tree
for allocation A, we will first determine the values of the
terminal nodes of the tree. The ‘width’ (W) and the ‘height’
(H) terminals will take the values) and20 respectively. The
‘slot width left’ (SWL) terminal will evaluate to5 because
that is the horizontal space left in the slot after the piece
is put in. The ‘slot height’ (SH) terminal evaluates to zero,
because the base of the slot is at the foot of the sheet. The
‘sheet width’ (SHW) terminal evaluates 1®0, because this
is the width of the entire sheet.

Expression 1 shows the tree written in linear form. If we
substitute the terminal values into the expression, we get



TABLE Il

INITIALISATION PARAMETERS OF EACH GENETIC PROGRAMMING RUN
Population size 00 | TTTTTTTTTTTTT I
Maximum generations 50 I :
Crossover probability 0.85 |
Mutation probability 0.1 }
Reproduction probability 0.05 !
Tree initialisation method Ramped half-and-half i
Selection method Tournament selection, size [ l
B ]
expression 2. This simplifies to expression 3, which evaluates i
to —19.9 to three decimal places. This value is the score for :
the allocation of piece one in the lowest slot, in a horizontal |
orientation. - i
SWL el D
———— | - (SH+H) Q) 80 !
SHW — W i
5 i
—2 ) —(0+20 2 ! 45
(100 — 50) ( ) @ |
I
> 20 3 i
50) ® L . - L
k-15-4 55 k—30 —

Figure 10 shows allocation B in detail. Again, we will
calculate the values of the terminal nodes for this allocatio,
in order to evaluate the tree. W and H are n2Wwand 50
respectively, they are different from their values in allocation
A because the piece is now in the vertical orientation. L -J
SWL evaluates ta35, as this is the horizontal space left T [ mmm—
in the slot after the piece has been placed, shown in figure
10. SH evaluates to zero, as before, because the allocation
concerns the same slot. The ‘sheet width’ (SHW) terminal
still evaluates tol 00.

When the terminal values have been substituted in, the tree [ T —
simplifies to expression 4, which evaluatesifb56 to three 80
decimal places. This is the score for the allocation of piece
one in the lowest slot, in a horizontal orientation.

35 ] 45
(2)-» @

Of these two allocations we have shown, the first allocation
has been rated as better by the heuristic, because it receivec |15 55 ; 30 ;
a higher score. The other four allocations for this piece are
scored in the same way. Then the allocations possible feig. 12. The new partial solution after the allocation which received the
piece two are scored, of which there are essentially threlighest score has been performed
shown in figure 11. There are in fact six allocations which
are scored for this piece, but it has identical width and height
so both orientations will produce the same result from thether piece) received a higher score than this, then this will
heuristic. The rest of the pieces that remain to be packdw the allocation that is performed. The slots will then be
have all of their allocations scored in the same way. Finallgonfigured as shown in figure 12.
the allocation which received the highest score from the The process of choosing a piece and where to put it is now
heuristic is actually performed. In other words the pieceomplete, and the next iteration begins. All the remaining
from the allocation is committed to the partial solution inpieces are scored again in the same way, and there will be
the orientation and slot dictated by the allocation. Then theew positions available due to the change in slot structure
slot structure is updated because a new piece has been tat has occurred. When all of the pieces have been packed,
into a bin. For example, the allocation involving piece onghe result for the first placement policy is stored, and the
in position ‘A" from figure 8 received a score 6f19.9. If  process begins again for the second placement policy, starting
no subsequent allocation (involving the same piece or amith an empty sheet again (the details of the placement

Hg. 11. Both of the potential allocations for piece two
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TABLE Il

policies can be found in section IV-A). The packing process THE DETAILS OF THE8 TRAINING INSTANCE CLASSES
for the second placement policy will be the same as for the
first, but the piece could be placed in the right side of a slot Class | Number of | Sheet | Optimum | Training
if the neighbouring piece to the right is larger than the piece Name | Pleces | Widih | Height | Instances
ITthe neig ap g 9 p NI 10 0 40 10
to the left. N2 20 30 50 10
N3 30 30 50 10
o N4 40 80 80 10
E. How the Heuristic is Evolved N5 50 100 100 10
- . N6 60 50 100 10
The hyper-heuristic GP system creates a random initial N7 70 80 100 10
population of heuristics from the function and terminal set. N8 80 100 80 10
The individual’s fitness is the total of the heights of the
solutions that it creates when the algorithm in fig 5 is TABLE IV
run for each instance in the training set. The fitness is to THE BENCHMARK INSTANCESUSED INTHIS PAPER
be minimised, because lower and more compact solution$siance set Number of | Number of | Sheet | Optimal
are better. Table Il shows the GP initialisation parametersname Instances | Rectangles| Width | Height
; ; ; ot - Hopper and
During jche tournament selection, if two heunstlcs obtain thethon (2001) o1 16197 | 20160 | 20-240
same fitness, and therefore have achieved the same t0tdienzuera and
height on the training instances, the winner will be the wang (2001) 12 25-1000 100 100
heuristic which results in the least waste between the piege8urke. Kendall and
in the solutions, not counting the free space at the top of thew el (2006) 12 10500 | 40-100| 40-300
In ' . 9 ; P . p_ 7 Y™Ramesh Babu and
sheet. Therefore, there is selection pressure on the individugisamesh Babu (1999 1 50 1000 375

to produce solutions where the pieces fit next to each other
neatly without any gaps. The individuals are manipulated

using the parameters shown in table Il. The mutation operatictangle. The N1-N12 benchmark instances are widely used
is point mutation, using the ‘grow’ method explained in [18],iy the literature, and so we compare the performance of our
with a minimum and maximum depth of 5, and the crossovesyolved heuristics with that of other approaches, on these
operator produces two new individuals with a maximumnstances. We perform ten runs for each problem instance

depth of 17. o _ class, resulting in 80 heuristics.
We wish to evolve general heuristics, applicable to more

than the instance(s) they are evolved on. To achieve this aim,
we use a training set to evolve the heuristics, and then report V. BENCHMARK PROBLEMS
the results on a separate test set. The instances currently in
the literature are varied and numerous enough to compareln this paper, we use 46 benchmark instances from the
solution methods, but they are not adequate for the automaliierature to test our evolved heuristics. The instances used
training or evolution of solution methods (heuristics). To are summarised in table IV. All of the instances were
train a heuristic, one needs a large set of training instanceteated from known optimal packings. The Hopper and
which are similar to each other is some way. We have creatdtirton dataset contains 7 classes of 3 problems each, and
such a set using the generation method for the existirgRpch class was constructed from a different sized initial
benchmark instances referred to as N1-N12 (introduced igctangle and contains a different number of pieces. All
[49]). Our aim is to investigate if the evolved heuristics argieces have a maximum aspect ratio of 7. Valenzuela and
capable of maintaining their performance on new instancé¥ang created two classes of problem, referred to as ‘nice’
of the same class as those they were evolved on, and and ‘path’. The nice dataset contains pieces of similar size,
different classes. We only evolve heuristics on the instancésd the path dataset contains pieces that have very different
from the N1-N8 classes, because of the run times involvedimensions. The dataset from Burke, Kendall and Whitwell
in repeatedly packing larger instances during the evolutiogpntains 12 instances with increasing numbers of rectangles
process. It is also interesting to investigate if the evolveth each. We also use an instance created by Ramesh Babu
heuristics maintain their performance on instances larger thand Ramesh Babu, containing 50 rectangles all of similar
those they were trained on. size. The dimensions of the pieces in this instance are given
The training instances from the classes N1-N8 were eadh [53].
created with a known optimum solution, because they are The Valenzuela and Wang dataset uses floating points to
generated by iteratively making guillotine cuts across rectepresent the dimensions of the rectangles. Our implemen-
angles, starting with a rectangle of the dimensions given imtion uses integers, so to obtain a dataset we can use, we
table 1. After the first cut is made, there are two rectanglesnultiplied the data byl x 10°, the results are then divided
and the next cut is made across one of those. Then the néxt1 x 10° so they can be compared to the other results in
cut is made across one of the three, and so on. We genertite literature. This procedure never reduces the accuracy of
10 training instances for each class in this way, so each of thige values, and so it is fair to compare the results with others
ten instances in a class is generated from the same startinghe literature.
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TABLE V
VI. RESULTS AND DISCUSSION RESULTS OF THE EVOLVED HEURISTICS WHEN TESTED ON THE

In this section. we Compare our evolved constructiv BENCHMARK INSTANCE OF THE SAME CLASS AS THOSE WHICH IT WAS
! %VOLVED ON. THE INSTANCE IS UNSEEN BY THE HEURISTIC DURING ITS

heuristics mainly to the best-fit heuristic, as it is the bestevoLution, AND THUS THESE RESULTS REPRESENT THE ABILITY OF

human created constructive heuristic in the literature. There THE HEURISTICS TO GENERALISE TO NEW INSTANCES
exists two pap.ers [4.9]’. [50] W.hICh report (_jlffer ent results Instance | Best-Fit Best-Fit | Best Evolved Average
from the best-f!t heuristic, possibly due to differing nuances Version 1| Version 2| Heuristic | Performance
of implementation. In our results tables here, we refer to thg™ NI 45 45 44 455
two implementations as ‘version 1’ and ‘version 2. N2 53 53 54 54.3
T ; . N3 52 52 52 52.7
The results section is divided into four subsections. Secy 4 83 86 83 845
tion VI-A reports the results of evolved heuristics on new | N5 105 105 106 105.2
instances of the same class as those they were evolved op. N6 103 102 105 103
. - N7 107 108 102 104
Section VI-B reports the results of those same heuristics on g 84 83 83 828

different classes of problem instance. Section VI-C shows

the results of heuristics evolved on more than one problem

class, which results in much more general heuristics. Thgy|q represent the results on the benchmark instance from

best evolved heuristic is then analysed in greater detail {je same class as the heuristics’ training set.

section VI-D. The results shown so far indicate that evolving on instances
of only one class does not produce general heuristics. The

A. Performance on New Instances of the Same Class heuristics appear to be specialised to one class of instance, at

In this section, we report the results of the heuristics whetfi€ €xpense of their reliability on other classes of instance.

tested on instances from the same class as those they were

evolved on. Table V summarises the results. Each row of the |mproving Generality by Evolving Heuristics on Three
table represents the results of ten heuristics, each evolved @}sses

ten instances from the class in the first column. The vaIues_I_ , , i di he level of i
are the results on the benchmark instance of that class from'© Investigate if we could increase the level of generality

the literature. The second and third columns represent th the evolved heunst!cs, new heuristics were evolveo! on
results of the two implementations of best-fit, from [49] andnstances from three different classes. We evolved heuristics

[50]. The fourth shows the result of the best heuristic fron?" three sets of classes. Five instances were included in the

the ten which were evolved, and the fifth column shows theFcaining set from each class, making 15 instances in total. The

average result. Note that the ‘best’ heuristic is the heurist I\J]I ;t ;Zt of tg?\lgel_f_rk'ft'cs Waz evolved on |Instgnceslof clasile4$
which obtained the best result on thiaining set not the test Vo» N4, and NS. The second set was evolved on classes N4,

set, so it is valid to say that table V shows how the heuristidy>: @nd N6, and the third set was evolved on instances from
generalise to new instances of the same type. N5, N6, and N7. The evolved heuristics were then tested
The average results in the table show that the evolvel! the N1-N10 benchmark instances from the literature, and
heuristics have roughly the same performance, and are Sonqg_mpared against the human created best-fit heurls_tlc.
times better than best fit on these benchmark problems.Talble V” shows a summary of the results obt_amed by
Indeed, the average results for the heuristics evolved A€ Neuristics. The first column shows the test instances,
classes N7 and N8 are better than both implementations 3¢ the second and third columns show the results of the
best-fit, which means that the GP can successfully evolN¥© implementations of best-fit. The remaining six columns
heuristics which can beat a human created heuristic on n&GPrésent the results of the best heuristics and the average
instances. This shows that heuristics can be evolved with tHgsuIt_s of the ten heu_r|s_t|cs. _The b‘?St heuristic of the ten
system to be specialised on a particular class of problem. Tf.ﬁ:)deflned as the heuristic which achieves the best results on

next section shows the results of the heuristics when testHif fraining set, not on the test set, so the results display the
on problems of a different class. ability of the GP methodology to produce heuristics which

can generalise to new instances.

) The table shows that the evolved heuristics can now
B. Performance on New Instances of Different Classes  gptain results competitive with, and often better than, best-
Table VI shows the results of applying the evolved heuridfit across all of the N1-N10 benchmark instances. It is
tics to instances of a different class to those they welienportant to emphasise that these heuristics are being reused
evolved on. Each row of the table represents the ten heuristios new instances of classes different to those they were
that were evolved on the training set from the class in the firstvolved on, and, in contrast to table VI they maintain their
column. The values in a row represent the average resultspdrformance on these different instances. They have evolved
the ten heuristics on the benchmark test instances namedidnbe more general because they have seen more than one
the top row. One can see from this table that the heuristi¢gpe of instance during their evolution. It is interesting to
are consistent and robust on new instances of the same clasge that this level of generality can be evolved by exposing
as those they were evolved on. The values highlighted the heuristics to just three different classes. Furthermore,
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TABLE VI
RESULTS OF THE EVOLVED HEURISTICS WHEN TESTED ON THE BENCHMARK INSTANCES OF ALL CLASSESHE BOLD VALUES INDUCATE THE
RESULTS WHERE THE HEURISTICS ARE TESTED ON INSTANCES OF THE SAME CLASSND SO THEY MATCH THE VALUES IN TABLE V

Training Test Instance
Class N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

ClassN1| 455 | 55 | 543 | 915 | 107.5| 108.1 | 117.5| 87.8 | 157.5| 158.8
Class N2 | 49.3 | 54.3 | 53.1 | 95.2 | 1189 | 1054 | 116 | 93.1 | 161.5| 158.4
Class N3 | 44.1 | 545 | 52.7 | 845 | 109.8 | 104.5| 106.4 | 83.3 | 157.2 | 155.4
Class N4 | 46.2 | 54.7 | 56 | 845 | 105.3| 106.2 | 122 | 83.6 | 168.8 | 157.5
Class N5| 49.1 | 54.6 | 60.3 | 87.7 | 105.2 | 103.2 | 119.9 | 82.9 | 168.8 | 156.5
Class N6 | 42.8 | 54.8 | 53.2 | 83.9 | 106.8 | 103 | 106.2 | 84.2 | 156.6 | 157

Class N7 | 419 | 54.6 | 53.3 | 83.5| 106.7 | 104 104 83 | 157.7 | 153.7
Class N8| 458 | 56.7 | 61 | 84.8| 105.2| 108.1| 118 | 82.8 | 178.2 | 160.1

- (- (+ (+ (- (* (+ SH SHH) (+ (+ (- (* (+ SH SHH) (+ (*

+ SHH (+ SHH H)) (- (+ H W) (* 2 SH))) (+ SHH (+ SHH

M) H) (% (+ (* -4.839 SH) (* 4 SHH)) (* SWL (+ SHH
) (+ (+ (* (% SWL SHH) (+ (% SHW 0.963) (% 0.963

recall that the evolved heuristics do not perform any pos
processing on the solution after it is completed. For exampl
any pieces which are extending vertically out of the top o

the solution are not taken out and replaced horizontally,
is the case with the best-fit heuristic [4?9]. If post—proces)s/in HC (+ H W) (* 3 SH))) (+ SHH H))) H) (% (+ (- (- H
H) SH) (+ SHH SHH)) (+ (* (+ SHH (+ SHH H)) (- (+ H

was perfomed, then in some cases the solutions would be C}ﬁﬁ
i ifi i (* 2 SH)) (- W (- 1 SH)))) (+ (+ (* (% SWL SHH) (-
or two units better. Specific examples of this can be seen SH)) SH) (* (- (+ (+ (- (* (+ SH SHH) (+ (* (+ SHH (+

section VI-D. SHH H)) (- (+ H W) (* 2 SH))) (+ SHH (+ SHH H)))) H)
(% (+ (* -4.839 SH) (* 6 SHH)) (* SWL (+ SHH H)))) (+
(+ (* (% SWL SHH) (+ (% SHW 0.963) (% 0.963 SH))) (+

This section provides some additional results from the (- H SH) SH) (% SHW 0.963))) (+ SHH H))) (% SWL
best evolved heuristic for the N4+N5+N6 classes. This i§SHH)) SHH))) (- H SH)) SHH)

the heuristic which performed best on the N1-N10 instances

out of the three best evolved heuristics in table VII. m:ig. 13. The best evolved heuristic, with some obvious simplifications
this section, we test the heuristic on further benchmark. <

datasets from the literature, and compare it against the best-

fit heuristic, direct metaheuristic approaches, and a reactive

GRASP approach. We then analyse three results from R thelheunstlcs evolve_? here_. The GRAﬁP results W?]E';Id
heuristic in detail using graphical representations of thBroably not be worse if rotations were allowed, so while
solutions. we are aware of the difference, we believe the comparison

Figure 13 shows the evolved heuristic, expressed in preffith GRASP is still valuable, as it is a comparison with a
notation, with the obvious simplifications made from its ranfOMPIex human designed heuristic with many parameters.
form. Note that it contains two large repeated sections of The table shows that the automatically designed heuristic
code. It also contains many repeated subtrees. For exampRs @ performance roughly the same as the best-fit heuristic.
(+ (* -4.839 SH) (* X SHH)) is repeated twice, where X It is noticably better than the metaheuristic methods, and
is 4 and 6. This expression increases when the slot heighticably worse than the reactive GRASP approach. This is
is lower, and so could contribute to prioritising lower slotsan appropriate place for the evolved heuristic, as the reactive
Another example that has this property is (+ (% SHW 0.963pRASP method is the state of the art in two dimensional strip
(% 0.963 SH)), which occurs twice. packing, and is a complex algorithm with many parameters,

Table VIII shows the results that the best evolved heuristihich are chosen by hand to enable the algorithm to obtain
obtains. We compare its results to two metaheuristic methot3e best results in the literature. We would not expect simple
described in section 11-C3, a genetic algorithm with bottomconstructive heuristics to perform better than such a method,
left-fill decoder, and a simulated annealing approach witihether they are designed by hand or by GP.
bottom-left-fill decoder. Table VIII shows only the best The ‘time’ column displays the time that the heuristic takes
result of the two on each instance. These two metaheuristit produce a solution. The run times are worth noting for the
approaches are also described in [5], and the results evaluated largest instances from each of the nice and path sets.
using a density measure rather than the length of shektis is due to the methodology of iterating through all of
measure used in this paper. To obtain the results that we cothe possible piece and slot combinations at every decision
pare with here, the metaheuristic methods were implementedint. These instances have two characteristics that result in
again in [49]. The results of the best-fit algorithm from [49],very large run times. The first is that the sheet width is large
which has achieved superior results to BL and BLF, is usetbmpared to the average width of the pieces. This means
as a constructive heuristic benchmark, and we also compahat many more slots are created, as more pieces fit into the
with the reactive GRASP presented in [58]. The GRASRheet width, and each potentially creates a new slot. This is
method does not allow piece rotations, while they are alloweztbmbined with the fact that the heuristic prefers to place long

D. Analysing the Best Evolved Heuristic
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TABLE VII
RESULTS OF THE HEURISTICS EVOLVED ONB CLASSES WHEN TESTED ON BENCHMARK INSTANCES OF ALL CLASSESTHIS TABLE SHOWS THE
GENERALITY OF THE EVOLVED HEURISTICS

Best-Fit Best Evolved Heuristic Average of 10 Heuristics
Version 1 | Version 2 | N3+N4+N5 | N4+N5+N6 | N5+N6+N7 | N3+N4+N5 | N4+N5+N6 | N5+N6+N7
N1 45 45 45 40 43 433 421 441
N2 53 53 54 56 56 54.5 55 56.2
N3 52 52 53 52 52 52.7 52.9 52.3
N4 83 86 82 84 82 83.2 83.3 83.6
N5 105 105 106 105 109 106.2 107.4 107.8
N6 103 102 103 102 104 103 103.1 103.5
N7 107 108 104 103 104 105.6 105.1 104.6
N8 84 83 84 83 83 82.8 82.9 82.9
N9 152 152 157 153 156 156.8 155.2 156.2
N10 152 152 153 153 153 155.8 153.2 154.5
500809 W heuristic when the piece height increases to 70 (the width is
-+ Height / fixed to 20). The second line represents the score returned
e by the heuristic when the width increases to 70 (the height
f is fixed to 20). These two lines represent possibilities for
f;“”m placing pieces into the first slot, and the scores that the
3 heuristic gives to those possibilities. The two lines represent
& seomoe the fact that pieces can take two orientations, and we only
é extend the dimensions up to 70 because the width of the
Haomree sheet is 70.
One can see from the width line that the score increases
o 5 o o0 o 0 in a linear fashion until the width hits 70, in which case the
Piace With/Height score increases dramatically, taking it above the score when

o 14 T 4 by the heuristic for dif , ~ the height is 70. A possible reason for this is that when the

T e s e o e o g vl e, 9262 e fits a slot exactly, the ‘SWL terminal takes a value of

the height is fixed to 20. The converse is true for the ‘height’ plot zero, and this may render sections of the heuristic redundant,
especially if they involve a multiplication with SWL.

This means that the heuristic scores the piece higher in
thin pieces vertically, which creates more slots as all of thigs horizontal orientation than its vertical orientation. In the
pieces stack up next to each other, and when their heighiBsence of any other pieces in this instance with a dimension
do not quite match up, each one will produce a separate slgteater than 70, this piece receives the highest score in its
In this situation, the heuristic is evaluated a vast number ®lorizontal orientation. If there existed pieces with a height
times more than is necessary. If the exact strategy of thgeater than 70, these would receive an even higher score,
evolved heuristic can be extracted and reimplemented, theacause the line in figure 14 representing height would
the process of packing can be made much more efficient, aggtend to its next point at a height of 75. Thus, the reason
this forms part of our future work (see section VIII for morefor the heuristic placing pieces vertically at the beginning of
discussion of this issue). the packing is that there rarely exists a piece which fits the

1) Example PackingsThree example packings, obtainedwidth of the sheet exactly, as is the case in instance N11.
by the best evolved heuristic, are shown in figures 15-17.
They show the scalability of the heuristic, as it was trained on
instances with 40-60 pieces, and the instances shown contain
197-300 pieces. Traditionally, heuristics have been human designed, which

The heuristic has a tendency to pack pieces verticalig a highly appropriate approach for many situations, espe-
rather than horizontally, especially at the beginning of theially where the importance of obtaining a solution close
packing, and this behaviour can be seen in figures 16 atal the optimum is paramount. However, there are situations
17. Indeed, it is this behaviour which results in the very poawhere the cost of employing a human heuristic designer may
solution to instance c2p2 (see table VIII), which is very widde too high, and where a solution very close to the optimum
compared to its optimal height, and which contains one verg not required. It is in these situations that the solutions
long piece which must be laid horizontally. In contrast, figur@re often obtained by hand, because the cost of a computer
15 shows the first three pieces packed horizontally, and tléded decision support system is too high. In these situations
reason for this can be seen in the graph in figure 14. it is less important that the solution quality is as close to

In figure 14, the two lines represent the scores returnamgptimal as possible, and more important that the solutions are
by the heuristic for the first slot in N11, for different sizedsimply better than that currently obtained without computer
pieces. The first line represents the score returned by tBapport. Organisations with such a goal would benefit from

VII. CONCLUSIONS
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TABLE VI
RESULTS OF OUR BEST EVOLVED HEURISTICS ON BENCHMARK DATA SETSSOMPARED TO RECENT METAHEURISTIC AND CONSTRUCTIVE HEURISTIC
APPROACHES AND THE STATE OF THE ART REACTIVE GRASP APPROACH

Name | Number | Optimal Meta- BF Reactive Best Evolved
of Pieces| Height heuristic | Heuristic | GRASP || Result| Time (s)
N1 10 40 40 45 40 40 < 0.01
N2 20 50 51 53 51 56 0.01
N3 30 50 52 52 51 52 0.04
N4 40 80 83 83 81 84 0.12
N5 50 100 106 105 102 105 0.25
N6 60 100 103 103 101 102 0.15
N7 70 100 106 107 101 103 0.39
N8 80 80 85 84 81 83 0.61
N9 100 150 155 152 151 153 0.391
N10 200 150 154 152 151 153 1.09
N11 300 150 155 152 151 152 2.28
N12 500 300 312 306 303 307 4.65
clpl 16 20 20 21 20 22 0.02
clp2 17 20 21 22 20 22 0.02
clp3 16 20 20 24 20 24 0.02
c2pl 25 15 16 16 15 18 0.05
c2p2 25 15 16 16 15 26 0.06
c2p3 25 15 16 16 15 17 0.05
c3pl 28 30 32 32 30 32 0.06
c3p2 29 30 32 34 31 34 0.12
c3p3 28 30 32 33 30 36 0.09
c4pl 49 60 64 63 61 63 0.30
c4p2 49 60 63 62 61 62 0.31
c4p3 49 60 62 62 61 63 0.25
c5pl 73 90 94 93 91 92 0.47
c5p2 73 90 95 92 91 93 0.59
c5p3 73 90 95 93 91 93 0.53
c6pl 97 120 127 123 121 123 1.19
c6p2 97 120 126 122 121 122 1.23
c6p3 97 120 126 124 121 123 1.12
c7pl 196 240 255 247 244 244 6.34
c7p2 197 240 251 244 242 244 7.72
c7p3 196 240 254 245 243 245 7.64
NiceP1 25 100 108.2 107.4 103.7 108.9 0.06
NiceP2 50 100 112 108.5 104.6 110.1 0.33
NiceP3 100 100 113 107 104 108.1 1.97
NiceP4 200 100 113.2 105.3 103.6 107.5 10.59
NiceP5 500 100 111.9 103.5 102.2 104.4 110.5
NiceP6 1000 100 - 103.7 102.2 104.1 654.1
PathP1 25 100 106.7 110.1 104.2 111.0 0.08
PathP2 50 100 107 113.8 101.8 106.5 0.45
PathP3 100 100 109 107.3 102.6 104.3 3.34
PathP4 200 100 108.8 104.1 102 104.1 19.44
PathP5 500 100 11111 103.7 103.1 103.5 194.70
PathP6 1000 100 - 102.8 102.5 104.9 | 1207.85
RBP1 50 375 400 400 375 400 0.06

this type of methodology, where the cost of a heuristic foautomated for this problem with evolutionary computation,
their problem would be made cheaper through automation ahd show the quality of the heuristics that can be designed
the heuristic design process. by evolution.

This paper has shown that an evolutionary hyper-heuristic
approach can automatically generate very good quality
reusable heuristics for the 2D strip packing problem. The In practical real world situations where variants of the
approach represents a change in the way that evolutiondawo dimensional strip packing problem occur, the problem
approaches are employed for this problem, and represents thetances will not be constructed from a known optimum
first attempt at automated heuristic design for this problenm which the pieces fit neatly together. The instances will
The contribution of this paper is not to show that this methodften contain a few types of pieces, with lots of copies of
ology obtains better heuristics than humans can create, @ich piece. This is because one organisation will produce
that it can obtain results more quickly, although the resulthe same product many times, which will require many
of the evolved heuristics are highly competitive with thecopies of identical pieces of material. We hypothesise that
best human created constructive heuristic in the literaturthis methodology will excel in such a situation. We have
The contribution is to show that the design process can ladready shown that the heuristics can be specialised to a

VIIl. FUTURE WORK
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Fig. 16. Packing obtained by the best evolved heuristic on instance
c7p2, to a height of 244. Note that if we applied a post-processing

stage such as the one used by best-fit, the small piece at the top
would be laid flat and the solution would be one unit better

Fig. 15. Packing obtained by the best evolved heuristic on instance
N11, to a height of 152. In contrast to its usual packing strategy, the . . ) - .

first three pieces are laid horizontally, perhaps because they fit exactly 19- 17. Packing obtained by the best evolved heuristic on instance
into the width of the slot PathP4, to a height of 104.1. similar to figure 16, post-processing

would improve this solution further, by laying the tallest piece on
its side

class of problems where the pieces are not identical, amday encode the piece width as a fraction of the sheet width,
so we believe this phenomenon will be more pronounced dfr as a fraction of the maximum piece width in the instance.
the instances are even more specialised. We intend to test thlgen the heuristic may be more applicable to new problem
by creating instances with few piece types, but many copiésstances, and be easier to interpret and understand. To
of each, and testing the quality of the solutions produced. express the issue a different way, if one was to take a problem

Another potential research direction would be to determin@stance, and create a new instance by reducing the size of all
whether the existing functions and terminals represent tfige dimensions by half, then one would expect that applying
best set for evolving generalisable heuristics, or if they needl heuristic to both instances would produce two solutions
to be modified to incorporate more general information. Fofhich look identical. Currently, because the terminals encode
example, the ‘piece width’ terminal currently encodes th@bsolute values, it is not clear whether an evolved heuristic
absolute value of the width of the piece, but it may bavould produce identical results for instances which are scaled
necessary to redefine this terminal. The redefined termintdp or down.
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This GP methodology is costly to produce an immediate9] D. whitley and J. P. Watson, “Complexity and no free lunch Siearch
solution, and while the aim is not to evolve solutions to
individual instances, we would still wish to keep the process
as efficient as possible. The reason for the lengthly run times)
is a combination of code bloat and the many times that

the GP tree must be evaluated for each packing. We u

the tarpeian wrapper method to reduce bloat, but this is a
general solution which may not be the most effective foll2]
this problem. We aim to investigate if there are methods
more specific to two dimensional packing which can reducgs;
the redundant code, without compromising the variety of the
heuristics in the population.

Once they are evolved, the heuristics are not optimisefly
and therefore look slower than existing heuristics such as
best-fit. We would like to investigate the possibility to extract
a method from the evolved tree and then optimise the
implementation of it. For example, if it can be shown thafis)
the evolved tree always scores lower slots much higher,
appropriate data structures can be used to ensure that
lowest slot is obtained in the most efficient way. To give
another example, if the pieces with a greater height are
always scored more highly then the evolved strategy c% ]
be reimplemented as a hand programmed heuristic whic
preorders the pieces. These reimplementations would remove
unnecessary calculations that are sure to make no diﬁerer[éfa
to the result. However, this can only be done once th
heuristic strategy has been evolved. The very general process
of iterating through every piece and slot looks inefficient!9l
when the strategy of an evolved heuristic is examined, but
keeping the process very general is necessary, to ensure that pp. 127-164.

it is possible to evolve a variety of strategies.

[20]
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