
1

A Genetic Programming Hyper-Heuristic Approach for Evolving
Two Dimensional Strip Packing Heuristics

Edmund K Burke,Member, IEEE,Matthew Hyde, Graham Kendall,Member, IEEE,and John Woodward

Abstract—We present a genetic programming system to
evolve reusable heuristics for the two dimensional strip packing
problem. The evolved heuristics are constructive, and decide
both which piece to pack next and where to place that piece,
given the current partial solution. This work contributes to a
growing research area which represents a paradigm shift in
search methodologies. Instead of using evolutionary computa-
tion to search a space of solutions, we employ it to search a space
of heuristics for the problem. One of the motivations for this
research area is that once a heuristic has been evolved, it can
be reused on any new problem instance, meaning that the time
consuming evolutionary process need only be run once to obtain
a solution to many problem instances. A second motivation is
to research methods to automate the heuristic design process. It
has been stated in the literature that humans are very good at
identifying good building blocks for solution methods, however
the task of intelligently searching through all of the potential
combinations of these components may be better suited to a
computer. With such tools at their disposal, heuristic designers
are then free to commit more of their time to the creative
process of determining good components, while the computer
takes on some of the design process by intelligently combining
these components. The contribution of this paper is to show
that a genetic programming hyper-heuristic can be employed
to automatically generate heuristics which are often better than
the human-designed state of the art constructive heuristics, in
a very well studied area.

Index Terms—Genetic Programming, Hyper-Heuristics, Two
Dimensional Stock Cutting

I. I NTRODUCTION

Hyper-heuristics are defined as heuristics which search
a space of heuristics, as opposed to searching a space of
solutions directly [1] (which, of course, is the conventional
approach to employing evolutionary algorithms). We employ
genetic programming (GP) as a hyper-heuristic to search the
space of heuristics that it is possible to construct from a set of
building blocks. The output is a set of automatically designed
heuristics which can be reused on new problems, and which
are often superior to the best human designed heuristic.

This paper presents such a hyper-heuristic system for the
two dimensional strip packing problem, where a number of
rectangles must be placed onto a sheet with the objective of
minimising the length of sheet that is required to accommo-
date the items. The sheet has a fixed width, and the required
length of the sheet is measured as the distance from the
base of the sheet to the piece edge furthest from the base.
This problem is known to be NP hard [2], and has many

Edmund K Burke, Matthew Hyde, Graham Kendall, and John Wood-
ward are with the ASAP research group, in the School of Com-
puter Science and IT, Nottingham University, Nottingham, UK. Email
[ekb,mvh,gxk,jrw]@cs.nott.ac.uk

industrial applications as there are many situations where a
series of rectangles of different sizes must be cut from a sheet
of material (for example, glass or metal) while minimising
waste.

Indeed, many industrial problems are not limited to just
rectangles (for example textiles, leather, etc) and this presents
another challenging problem [3]. There are many other
types of cutting and packing problems in one, two and
three dimensions. A typology of these problems is presented
by Wascher et al. in [4]. As well as their dimensionality,
the problems are further classified into different types of
knapsack and bin packing problems, and by how similar the
pieces are to each other.

In this work, the rectangular pieces are free to rotate by 90
degrees, and there can be no overlap of pieces. The guillotine
version of this problem occurs where the cuts to the material
can only be made perpendicular to an edge, and must split
the sheet into two pieces, then those same cutting rules apply
recursively to each piece. However, we are interested here in
the non-guillotine version of the problem, which has no such
constraint on how the pieces are cut.

The motivation behind this work is to develop a hyper-
heuristic GP methodology which can automatically generate
a novel heuristic for any class of problem instance. This
has the potential to eliminate the time consuming process of
manual problem analysis and heuristic building that a human
programmer would carry out when faced with a new problem
instance or set of instances. Work on automatic heuristic
generation has not been presented before for this problem.
However, work employing such systems for on other problem
domains has been published (see section III-B).

There are two components to any constructive heuristic
used for the two dimensional strip packing problem. Many of
the heuristics created by humans are reliant on the presented
order of the pieces before the packing begins. Often, the
pieces are pre-ordered by size, which can achieve better
results [5]. However, it is not currently possible to say that
this will result in a better packing, in the general case, than
a random ordering.

Metaheuristics have been successfully employed to gener-
ate a good ordering of the pieces before using a simple place-
ment policy to pack them [5], [6]. These hybrid metaheuristic
approaches have shown that it is possible for one heuristic
to gain good results on awider rangeof instances because
of the ability to evolve a specific ordering of the pieces for a
given instance. However, they are still limited by the fact
that their packing heuristic may not perform well on the
instance regardless of the piece order, which would make it



2

difficult for the hybrid approach to find a good solution. The
heuristics we evolve do not suffer from the same limitations.
As we will show, they decide which piece to place next in
the partial solutionand where to place it. So the evolved
heuristics’ performance is independent of any piece order.

The outline of this paper is as follows. In section II we
discuss some of the motivations and philosophy behind this
line of research. In section III, we introduce the background
literature on GP, hyper-heuristics, and 2D strip packing
approaches. Section IV presents our algorithm. Section V
describes the benchmark problem instances used in this
paper, and section VI presents the results of the evolved
heuristics on new problem instances not used during their
evolution. The results of the best evolved heuristic are
analysed and compared against recent results in the literature
on benchmark instances. Finally, conclusions and ideas for
future work are given in sections VII and VIII.

II. M OTIVATION FOR THIS RESEARCHAREA

The ‘No Free Lunch’ theorem [7], [8] shows that all
search algorithms have the same average performance over
all possible discrete functions. This would suggest that it
is not possible to develop a general search methodology
for all optimisation problems as, over all possible discrete
functions, “no heuristic search algorithm is better than ran-
dom enumeration” [9]. However, it is important to recognise
that this theorem isnot saying that it is not possible to
build search methodologies which aremore general than is
currently possible. It is often the case in practice that search
algorithms are developed for a specific group of problems,
for instance timetabling problems [10]. Often the algorithms
are developed for a narrower set of problems within that
group, for instance university course timetabling [11], [12]
or exam timetabling problems [13]. Indeed, algorithms can
be specialised further by developing them for a specific or-
ganisation, whose timetabling problem may have a structure
very different to that of another organisation with different
resources and constraints [14], [15]. At each of these levels,
the use of domain knowledge can allow the algorithms to
exploit the structure of the set of problems in question. This
information can be used to intelligently guide a heuristic
search.

In the majority of cases, humans develop heuristics which
exploit certain features of a problem domain, and this allows
the heuristics to perform better on average than random
search. Hyper-heuristic research is concerned with building
systems which can automatically exploit the structure of a
problem they are presented with, and create new heuristics
for that problem, or intelligently choose from a set of pre-
defined heuristics. In other words, hyper-heuristic research
aims to automate the heuristic design process, or automate
the decision of which heuristics to employ for a new problem.

The subject of this paper is a hyper-heuristic system
which automatically designs heuristics, using a GP algorithm.
The heuristics are automatically designed by using GP to
intelligently combine a set of human defined components.

While the specification of the components themselves is
not automated, the methodology as a whole requires less
human input than would be required to manually design fully
functional heuristics. Fukunaga states that humans excel at
identifying good potential components of methods to solve
problems, but combining them seems to be a more difficult
undertaking [16]. As problems in the real world become
more complex, identifying ways to automate this process
may become fundamental to the design of heuristics, because
it will become more difficult to manually combine their
potential components in ways that fully exploit the structure
of a complex problem.

There are a number of advantages of developing a method-
ology to automatically design heuristics. There is a possibil-
ity of discovering new heuristics which are unlikely to be
invented by a human analyst, due to their counterintuitive
nature. Another advantage is that a different heuristic can be
created for each subset of instances, meaning that the results
obtained on each are more likely to be better than those
obtained by one general heuristic. Human created heuristics
are designed to perform well over many problem instances,
because it would be too time consuming to manually develop
a new heuristic specialised to every subset of instances. A
hyper-heuristic approach, such as the one described in this
paper, can specialise heuristics to a given problem class, at
no extra human cost. The evolutionary algorithm need only
be run again to produce a new heuristic.

One of the long term goals of this research direction is
in making optimisation tools and decision support available
to organisations who currently solve their problems by hand,
without the aid of computers. Examples of such organisations
could be, for example, a primary school with a timetabling
problem, or a small delivery company with a routing prob-
lem. It is often prohibitively expensive for them to employ
a team of analysts to build a bespoke heuristic, which
would be specialised to their organisation’s problem. A more
general system which automatically creates heuristics would
be applicable to a range of organisations, potentially lowering
the cost to each. It may be that there is a trade-off between the
generality of such a system, and the quality of the solutions it
obtains. However, organisations for whom it is too expensive
to commission a bespoke decision support system, are often
not interested in how close their solutions are to optimal.
They are simply interested in how much better the solutions
are than those they currently obtain by hand. For example,
consider a small organisation that currently solves its delivery
scheduling problem by hand. This organisation may find
that the cost of commissioning a team of humans to design
a heuristic decision support system, would be far greater
than the benefit the company would get in terms of better
scheduling solutions. However, the cost of purchasing an ‘off
the shelf’ decision support system which canautomatically
design appropriate heuristics, may be lower than the resulting
reduction in costs to the organisation. If the solutions are
good enough, and they are cheap enough, then it begins
to make economic sense for more organisations to take



3

advantage of heuristic search methodologies. Hyper-heuristic
research aims to address the needs of organisations interested
in “good-enough soon-enough cheap-enough”solutions to
their optimisation problems [17]. Note that “good enough”
often means solutions better than they currently obtain by
hand, “soon enough” typically means solutions delivered at
least as quick as those obtained by hand, and “cheap enough”
usually means the cost of the system is low enough that its
solutions add value to the organisation.

III. B ACKGROUND

A. Genetic Programming

Genetic programming (GP) (see [18], [19], [20]) is a
technique used to evolve populations of computer programs
represented as tree structures. An individual’s performance
is assessed by evaluating its performance at a specific task,
and genetic operators such as crossover and mutation are
performed on the individuals between generations. A list of
GP parameters used in this paper is given in section IV-E.

B. Hyper-Heuristics

Hyper-heuristics are defined as heuristics that search a
space of heuristics, as opposed to searching a space of
solutions directly [1]. Research in this area is motivated
by the goal of raising the level of generality at which
optimisation systems can operate [17], and by the assertion
that in many real-world problem domains, there are users
who are interested in“good-enough, soon-enough, cheap-
enough” solutions to their search problems, rather than
optimal solutions [17]. In practice, this means researching
systems that are capable of operating over a range of differ-
ent problem instances and sometimes even across problem
domains, without expensive manual parameter tuning, and
while still maintaining a certain level of solution quality.

Many existing metaheuristics have been used successfully
as hyper-heuristics. Both a genetic algorithm [21] and a
learning classifier system [22] have been used as hyper-
heuristics for the one-dimensional bin packing problem. A
genetic algorithm with an adaptive length chromosome and
a tabu list was used in [23] as a hyper-heuristic. A case
based reasoning hyper-heuristic is used in [24] for both exam
timetabling and course timetabling. Simulated annealing is
employed as a hyper-heuristic in [25] for the shipper rational-
isation problem. A tabu search hyper-heuristic [26] is shown
to be general enough to be applied to two very different
domains: nurse scheduling and university course timetabling.
A graph based hyper-heuristic for timetabling problems is
presented in [27]. Three new hyper-heuristic architectures
are presented in [28], treating mutational and hill climbing
low-level heuristics separately. A choice function has also
been employed as a hyper-heuristic, to rank the low-level
heuristics and choose the best [29]. A distributed choice
function hyper-heuristic is presented in [30].

The common theme to the hyper-heuristic research men-
tioned above is that all of the approaches are given a set of

low-level heuristics, and the hyper-heuristic chooses the best
one or the best sequence from those. Another class of hyper-
heuristic, which has received less attention in the literature,
generates low-level heuristics from a set of building blocks
given to it by the user. The aim of this class of hyper-heuristic
is to create a low-level heuristic from these building blocks.
Examples of other work in this growing research area are
as follows. The ‘CLASS’ system presented in [16],[31] and
[32] is an automatic generator of local search heuristics for
the SAT problem, and is competitive with human-designed
heuristics. A different methodology for SAT is presented in
[33], where heuristics are more parsimonious and faster to
execute. One-dimensional bin packing heuristics are evolved
in [34], [35], [36], have superior performance to the human-
designed best-fit heuristic, even on new instances much larger
than those in the training set. The approach is applied to the
travelling salesman problem [37], and evolving dispatching
rules for the job shop problem [38].

C. 2D Stock Cutting Approaches

1) Exact Methods:Gilmore and Gomory [39] first used
a linear programming approach in 1961 to solve small size
problem instances. Tree search procedures have been em-
ployed more recently to produce optimal solutions for small
instances of the 2D guillotine stock cutting problem [40] and
2D non-guillotine stock cutting problem [41]. The method
used in [40] has since been improved in [42] and [43]. It is
recognised that these methods cannot provide good results
for large instances. For example, the largest instance used
in both [42] and [43] is 60 pieces. For larger instances,
therefore, a heuristic approach must be introduced, which
cannot guarantee the optimal solution, but can produce high
quality results for much larger problems.

2) Heuristic Methods:Baker et al. define a class of pack-
ing algorithms named ‘bottom up, left justified’ (BL) [44].
These algorithms maintain bottom left stability during the
construction of the solution, meaning that all the pieces can
not be moved any further down or left from where they
are positioned. The heuristic presented in [44] has come
to be named ‘bottom-left-fill’ (BLF) because it places each
piece in turn into the lowest available position, including any
‘holes’ in the solution, and then left justifying it. While this
heuristic is intuitively simple, implementations are often not
efficient because of the difficulty in analysing the holes in
the solution for the points that a piece can be placed [45].
Chazelle presents an optimal method for determining the
ordered list of points that a piece can be put into, using
a ‘spring’ representation to analyse the structure of the holes
[45].

These heuristics take, as input, a list of pieces, and the
results rely heavily on the pieces being in a ‘good’ order
[44]. Theoretical work presented by Brown et al. [46] shows
the lower bounds for online algorithms both for pre-ordered
piece lists by decreasing height and width, and non pre-
ordered lists. Results in [5] have shown that pre-ordering
the pieces by decreasing width or decreasing height before



4

applying BL or BLF results in performance increases of
between 5% and 10%.

Zhang et al [47] use a recursive algorithm, running in
O(n3) time, to create good strip packing solutions, based
on the ‘divide and conquer’ principle. Finally, two heuristics
for the strip cutting problem with sequencing constraint are
presented by Rinaldi and Franz [48], based on a mixed
integer linear programming formulation of the problem.

Recently, a ‘best-fit’ style heuristic was presented in [49].
This algorithm is shown to produce better results than
previously published heuristic algorithms on benchmark in-
stances [49]. The details of this heuristic are given in section
IV-A. This heuristic is hybridised with metaheuristic methods
such as simulated annealing and tabu search in [50]. The
methodology involves using best-fit to pack most of the
pieces, and then using a metaheuristic method to iteratively
reorder the remaining pieces, and repack them with bottom-
left-fill. This approach obtains significantly better results than
previously published methodologies, on almost all of the
benchmark problems. We use the non-hybridised version of
best-fit for comparison in this paper, because our evolved
heuristics are contructive, and best-fit is the best human
created constructive heuristic in the literature.

3) Metaheuristic Methods:Metaheuristics have been suc-
cessfully employed to evolve a good ordering of pieces for
a simple heuristic to pack. For example, Jakobs [6] uses a
genetic algorithm to evolve a sequence of pieces for a simpler
variant of the BL heuristic. This variant packs each piece by
initially placing it in the top right of the sheet and repeating
the cycle of moving it down as far as it will go, and then
left as far as it will go. Liu and Teng [51] proposed a simple
BL heuristic to use with a genetic algorithm that evolves the
order of pieces. Their heuristic moves the piece down and to
the left, but as soon as the piece can move down it is allowed
to do so. However, using a BL approach with a metaheuristic
to evolve the piece order is somewhat limited, for example it
is shown in [44], [52] that, for certain instances, there is no
sequence that can be given to the BLF heuristic that results
in the optimal solution.

Ramesh Babu and Ramesh Babu [53] use a genetic algo-
rithm in the same way as Jakobs, to evolve an order of pieces,
but use a slightly different heuristic to pack the pieces, and
different genetic algorithm parameters, improving on Jakobs’
results.

Valenzuela and Wang [54] employ a genetic algorithm
for the guillotine variant of the problem. They use a linear
representation of a slicing tree as the chromosome. The
slicing tree determines the order that the guillotine cuts are
made and between which pieces. The slicing trees bear a
similarity with the GP trees in this paper, which represent
heuristics. The slicing trees are not heuristics however, they
only have relevance to the instance they are applied to, while
a heuristic dynamically takes into account the piece sizes of
an instance before making a judgement on where to place a
piece. If the pattern of cuts dictated by the slicing tree were
to be applied to a new instance, the pattern does not consider

any properties of the new pieces. For example, if the slicing
tree defines a cut between piece one and piece nine, then this
cut will blindly be made in the new instance even if these
pieces now have wildly different sizes. A heuristic would
consider the piece sizes and the spaces available before
making a decision.

Hopper and Turton [5] compare the performance of several
metaheuristic approaches for evolving the piece order, each
with both the BL constuctive algorithm of Jakobs [6], and
the BLF algorithm of [44]. Simulated annealing, a genetic
algorithm, naive evolution, hill climbing, and random search
are all evaluated on benchmark instances, and the results
show that better results are obtained when the algorithms
are combined with the BLF decoder. The genetic algorithm
and BLF decoder (GA+BLF) and the simulated annealing
approach with BLF decoder (SA+BLF) are used as bench-
marks in this paper.

Other approaches start with a solution and iteratively
improve it, rather than heuristically constructing a solution.
Lai and Chan [55] and Faina [56] both use a simulated
annealing approach in this way, and achieve good results on
problems of small size. Also, Bortfeldt [57] uses a GA which
operates directly on the representations of strip packing
solutions.

A reactive greedy randomised adaptive search procedure
(reactive GRASP) is presented in [58] for the two di-
mensional strip packing problem. The method involves a
constructive phase and a subsequent iterative improvement
phase. To obtain the final overall algorithm, four parameters
were chosen with the results from a computational study,
using some of the problem sets used in the paper. First,
one of four methods of selecting the next piece to pack is
chosen. Second, a method of randomising the piece selection
is chosen from a choice of four. Third, there are five
options for choosing a parameterδ, which is used in the
randomisation method, and finally there are four choices for
the iterative improvement algorithm after the construction
phase is complete. The method is a complex algorithm with
many parameters, which are chosen by hand.

Belov et al. have obtained arguably the best results in
the literature for this problem [52]. Their ‘SVC’ algorithm
is based on an iterative process, repeatedly applying one
constructive heuristic, ‘SubKP’, to the problem, each time
updating certain parameters that guide its packing. The
results obtained are very similar to those obtained by the
GRASP method. They obtain the same overall result on
the ‘C’, ‘N’ and ‘T’ instances of Hopper and Turton, but
SVC obtains a slightly better result on ten instance sets
from Berkey and Wang, and Martello and Vigo. Together,
SVC(SubKP) and the reactive GRASP method represent the
state of the art in the literature, and SVC(SubKP) seems to
work better for larger instances [52].

We compare with the results of the reactive GRASP in
section VI, because they represent some of the best in the
literature, and their reported results cover all of the data sets
that we have used here. It must be noted however that the



5

aims of the hyper-heuristic methodology presented in this
paper differ in certain respects from the aims of other work
in the literature.

The aim of the vast majority of the literature is to generate
good quality solutions. The aim of this paper is to focus
on a research method capable of generating good quality
heuristics. The quality of the results obtained by the auto-
matically designed heuristics is of high importance, but we
do not aim only for better results than the state of the art hand
crafted heuristics. Therefore, the contribution of this paper is
to show that automatically generated constructive heuristics
can obtain results in the same region as the current state of
the art human developed heuristics in two dimensional strip
packing [58], [52], which use a constructive phaseand an
iterative phase. We also show that the automatically gen-
erated constructive heuristics can obtain better results than
the human designed state of the art constructive heuristic,
presented in [49].

IV. M ETHODOLOGY

In section IV-A, we explain the functionality of the best-fit
heuristic from [49], [50], to which we compare our evolved
heuristics, and which provides the inspiration for our packing
framework. In section IV-B, we explain the representation of
the problem that we use, and how it is updated each time a
piece is placed into the solution. Section IV-C explains how
the heuristic decides which piece to pack next and where
to place it. A step by step packing example is given in
section IV-D to further clarify this process. Section IV-E
explains how the heuristics themselves are evolved, detailing
the GP parameters and the method by which the heuristics
are trained.

A. The Best-Fit Heuristic

The best-fit heuristic [49] is explained here because it
provides the inspiration for the framework described in
section IV-C and figure 5. We also compare our evolved
heuristics to this heuristic in the resuts section (VI).

The heuristic returns the result of three separate attempts
at packing, once with each of three placement policies. For
each policy, the pieces are packed one at a time, each into
the current lowest available slot on the sheet. The pieces
are free to be rotated by90◦, and the piece chosen to be
packed is the one which fills the most of the width of the
slot. Note that the piece can be placed in the left or right
sides of the slot, and it is the current placement policy that
determines which side the piece is placed. The first placement
policy is to always put the piece into the lower left corner
of the slot. The second policy is to put the piece next to the
tallest neighbouring piece. Finally, the third policy is to put
the piece next to the shortest neighbouring piece. The three
policies result in different solutions, and the best of the three
solutions is returned as the result of the heuristic.

Our evolved heuristics pack the pieces in a similar way to
the best-fit heuristic, because all the pieces are considered for
packing at each step, not just the first in the sequence given

to it. However, in contrast, best-fit only considers one slot
for the pieces, whereas the heuristics evolved in this paper
considerall slots. We also give our evolved heuristics three
attempts at packing, once with each placement policy, as is
the case with best-fit.

B. Representation of the Problem

Our hyper-heuristic system evolves a constructive heuris-
tic, which considers the strip packing problem to be a
sequence of steps, where a piece must be placed at each step.
At every step, the heuristic chooses a piece, and the position
to place it, according to the state of the sheet and the pieces
already placed on it. To this end, the sheet is represented
as a set of dynamic ‘slots’, the number and configuration of
which will change at every step. Each slot has a height (the
distance from the base of the sheet to the base of the bin), a
lateral position, and a width. Each slot represents a position
in the solution where a piece can be placed, and the slot
structure is refreshed after a piece is placed.

At the beginning of the packing process the sheet will
be represented as just one slot, with height zero and width
equal to the width of the sheet. As an example, figure 1
shows the slot configuration (two slots, with different heights
and widths) when one piece has been placed onto the sheet
in the lower left corner. The slots are shown by horizontal
lines, and the left and right limits of the slot are shown by
black squares. The dashed line extending from the highest
slot signifies that the width of the slot extends beyond the
top of the piece and continues until it reaches the right hand
side of the sheet.

Figures 1-4 show a step by step example of three more
pieces being packed and how the slot structure changes as
each piece is packed. Figure 2 shows the slot structure after a
second piece has been placed into the lower right corner. One
can observe that the bold black horizontal lines represent the
highest horizontal surfaces at any given horizontal position
in the packing. The slots are defined by these black lines,
by extending their widths in both directions to the nearest
vertical edge of a piece or the edge of the sheet (this is
shown by the dashed lines). There are now three slots in the
partial solution.

Figure 3 shows the slot structure after a piece has been
placed into the lower left corner of the lowest slot. There are
now four slots, and one can see that the widths of the slots
extend as far as the nearest vertical edge in both directions.
After the fourth piece has been placed into the second highest
slot, figure 4 shows the slot structure. There are now two
slots, as the height of the fourth piece matches that of its
neighbour to the right. As the fourth piece hangs over the
right edge of the piece below it, the narrowest slot from figure
3 is not generated this time, as the surface is no longer the
highest at this horizontal position.

The slot structure is refreshed after each piece is placed,
and the process is analogous to pointing a laser vertically
downwards onto the solution and sweeping it from left to
right. All of the surfaces hit by the laser become the bold



6

black horizontal lines, and from these the slots are defined,
by extending them left and right to the nearest vertical edges.

C. How the Heuristic Decides Where to Put a Piece

This section is a general explanation of the process by
which the heuristic decides which piece to pack next and
where to put it. This is also summarised in the pseudocode
of figure 5. Section IV-D then goes into more detail on this
process, using a specific example.

A piece can adopt two orientations in a slot. Given a
partial solution, we will refer to a combination of piece, slot,
and orientation as an ‘allocation’. Therefore, there are two
allocations to consider for each piece and slot combination,
provided that the piece’s width in each orientation is smaller
than the width of the slot. An allocation therefore represents
one of the set of choices (of a piece and where to put it) that a
heuristic could make at the given decision step. A heuristic
in this hyper-heuristic system is a function that rates each
allocation. The heuristic is evaluated once for each allocation
to obtain a score for each allocation.

The heuristic scores an allocation by taking into account
a number of its features, which are represented as the GP
terminals shown in the lower six rows of table I. There are
three terminal values describing the piece width (W), height
(H), and area (A) in its given orientation. There are two
representing the slot width (SW) and the slot height (SH), and
one which represents the horizontal space left in the slot if
the piece were to be put in (SWL). The sheet dimensions are
represented by terminals for the sheet width (SHW) and sheet
height (SHH). The sheet height is calculated as the height
of the optimum soltion multiplied by 1.5. Constants are
included for the heuristics to use, in the form of ephemeral
random constants, detailed in [18].

For each possible allocation, the values of the terminals
are calculated, and the heuristic is evaluated. The allocation
for which the heuristic returns the highest value is deemed to
be the best, and therefore that allocation is performed on the
solution at the current step. In other words, the piece from
the allocation is put in the slot from the allocation, in the
orientation dictated by the allocation. This process is shown
in the example given in section IV-D.

In a similar way to the human created best-fit heuristic
(see section IV-A), an evolved heuristic obtains a result by
returning the best of three complete attempts at packing, one
with each of three placement policies. When an allocation has
been chosen by the heuristic, the piece can either be placed
in the left or right of the chosen slot. The location of the
piece is determined by the current packing policy. The first
placement policy is to always put the piece into the lower left
corner of the slot. The second policy is to put the piece next
to the tallest neighbouring piece. Finally, the third policy is
to put the piece next to the shortest neighbouring piece. The
three policies result in different solutions, and the best of the
three solutions is returned as the result of the heuristic.

TABLE I
THE FUNCTIONS AND TERMINALS AND DESCRIPTIONS OF THE VALUES

THEY RETURN

Name Label Description

+ + Add two inpus
- - Subtract second input from first input
* * Multiply two inputs
% % Protected divide function

Width W The width of the piece
Height H The height of the piece
Area A The area of the piece

Slot Height SH Slot height, relative to base of sheet
Slot Width Left SWL Difference between the slot and piece widths

Sheet Width SHW Width of the sheet
Sheet Height SHH Height of optimum solution multiplied by 1.5

Constant ERC Ephemeral random constant

D. A packing example

This section works through an example of how the heuris-
tic chooses a piece from those which remain to be packed,
and where to put it in the partial solution. It goes into
further detail than section IV-C. The heuristic we will use
in this example is shown in figure 6. It consists of nodes
from the GP function and terminal set shown in table I.
A heuristic in the population could contain any subset of
the nodes available. Recall that the heuristic performs three
complete packings, one for each placement policy (described
in section IV-A), and returns the best solution of the three.
This example will use the first placement policy, where the
piece is always put into the lower left corner of the slot.
For the other two placement policies, the same methodology
is used, but the rules of the other placement policies will
govern whether the piece is placed into the left or right of
the slot.

We will use the heuristic shown in figure 6 to choose a
piece from those which remain to be packed (shown in figure
7) and choose where to place it in the partial solution shown
in figure 2. The partial solution shows that two pieces have
already been packed by the heuristic, one to the left and one
to the right. We do not show this process, because it is the
same as the one we will explain, and the example will be
more descriptive if we show the process in the middle of the
packing. There are three slots in the partial solution, which
are defined by the pieces already packed.

For each placement policy, the algorithm takes each piece
in turn, and evaluates the tree for every possible allocation of
that piece. So, first we will consider piece one from figure 7.
A piece can be placed into a slot in either orientation, as long
as it does not exceed the width of the slot. Piece one does not
exceed the width of any of the slots, so it can be considered
for allocation into all three slots. Figure 8 shows these six
valid allocations for piece one in the partial solution, labelled
A to F. Each of these six allocations will receive a score,
obtained by evaluating the tree once for each allocation. The
tree will give a different score for each allocation because the
GP terminal nodes will evaluate to different values depending
on the features of the allocation. One can see that two of
these six allocations represent placing the piece suspended



7

Fig. 1. The two slots after one piece has been packed, the highest
slot extendsout to the right as far as the edge of the sheet

Fig. 2. The new slot extends out to the left, as far as the edge of the
first piece

Fig. 3. There are now four slots after the third piece is placed, the
black squares show the limits of the slot width

Fig. 4. When the fourth piece is placed, two slots remain, because
the height of the piece matches that of the piece to its right

FOR each of three placement policies
WHILE pieces exist to be packed

IF at least one piece can fit in any slot
FOR each allocation

evaluate heuristic on allocation
obtain a score from the evaluation
save highest scoring allocation

END FOR
perform the best allocation on the solution

END IF
update slot structure

END WHILE END FOR
RETURN best solution from the three placement policies

Fig. 5. Pseudo code showing the overall program structure within which a heuristic operates. The packing
policies are explained in section IV-A



8

−
�

�
�
�

@
@
@
@

%
�

�
@
@
−
�

�
@
@
WSHW

SWL

+
�

�
@
@
HSH

Fig. 6. An example heuristic

Fig. 7. The pieces we will consider for packing

Fig. 8. All of the places where piece one from figure 7 can go

Fig. 9. Allocation A from figure 8 in detail

Fig. 10. Allocation B from figure 8 in detail

in the middle of the solution, with no piece below it. This is
permitted by the representation, because of the possibility of
an even wider piece being chosen to be placed across a gap,
and we expect a good evolved heuristic will never choose
such an allocation when it can be placed further down in the
solution.

The process of evaluating the tree is explained here, by
taking the examples of allocations A and B from figure 8.
Figure 9 shows allocation A in detail. To evaluate the tree
for allocation A, we will first determine the values of the
terminal nodes of the tree. The ‘width’ (W) and the ‘height’
(H) terminals will take the values50 and20 respectively. The
‘slot width left’ (SWL) terminal will evaluate to5 because
that is the horizontal space left in the slot after the piece
is put in. The ‘slot height’ (SH) terminal evaluates to zero,
because the base of the slot is at the foot of the sheet. The
‘sheet width’ (SHW) terminal evaluates to100, because this
is the width of the entire sheet.

Expression 1 shows the tree written in linear form. If we
substitute the terminal values into the expression, we get



9

TABLE II
INITIALISATION PARAMETERS OF EACH GENETIC PROGRAMMING RUN

Population size 1000
Maximum generations 50
Crossover probability 0.85
Mutation probability 0.1
Reproduction probability 0.05
Tree initialisation method Ramped half-and-half
Selection method Tournament selection, size 7

expression 2. This simplifies to expression 3, which evaluates
to −19.9 to three decimal places. This value is the score for
the allocation of piece one in the lowest slot, in a horizontal
orientation. (

SWL

SHW −W

)
− (SH +H) (1)(

5
100− 50

)
− (0 + 20) (2)(

5
50

)
− 20 (3)

Figure 10 shows allocation B in detail. Again, we will
calculate the values of the terminal nodes for this allocation
in order to evaluate the tree. W and H are now20 and 50
respectively, they are different from their values in allocation
A because the piece is now in the vertical orientation.
SWL evaluates to35, as this is the horizontal space left
in the slot after the piece has been placed, shown in figure
10. SH evaluates to zero, as before, because the allocation
concerns the same slot. The ‘sheet width’ (SHW) terminal
still evaluates to100.

When the terminal values have been substituted in, the tree
simplifies to expression 4, which evaluates to49.56 to three
decimal places. This is the score for the allocation of piece
one in the lowest slot, in a horizontal orientation.(

35
80

)
− 50 (4)

Of these two allocations we have shown, the first allocation
has been rated as better by the heuristic, because it received
a higher score. The other four allocations for this piece are
scored in the same way. Then the allocations possible for
piece two are scored, of which there are essentially three,
shown in figure 11. There are in fact six allocations which
are scored for this piece, but it has identical width and height
so both orientations will produce the same result from the
heuristic. The rest of the pieces that remain to be packed
have all of their allocations scored in the same way. Finally,
the allocation which received the highest score from the
heuristic is actually performed. In other words the piece
from the allocation is committed to the partial solution in
the orientation and slot dictated by the allocation. Then the
slot structure is updated because a new piece has been put
into a bin. For example, the allocation involving piece one
in position ‘A’ from figure 8 received a score of−19.9. If
no subsequent allocation (involving the same piece or any

Fig. 11. Both of the potential allocations for piece two

Fig. 12. The new partial solution after the allocation which received the
highest score has been performed

other piece) received a higher score than this, then this will
be the allocation that is performed. The slots will then be
configured as shown in figure 12.

The process of choosing a piece and where to put it is now
complete, and the next iteration begins. All the remaining
pieces are scored again in the same way, and there will be
new positions available due to the change in slot structure
that has occurred. When all of the pieces have been packed,
the result for the first placement policy is stored, and the
process begins again for the second placement policy, starting
with an empty sheet again (the details of the placement



10

policies can be found in section IV-A). The packing process
for the second placement policy will be the same as for the
first, but the piece could be placed in the right side of a slot
if the neighbouring piece to the right is larger than the piece
to the left.

E. How the Heuristic is Evolved

The hyper-heuristic GP system creates a random initial
population of heuristics from the function and terminal set.
The individual’s fitness is the total of the heights of the
solutions that it creates when the algorithm in fig 5 is
run for each instance in the training set. The fitness is to
be minimised, because lower and more compact solutions
are better. Table II shows the GP initialisation parameters.
During the tournament selection, if two heuristics obtain the
same fitness, and therefore have achieved the same total
height on the training instances, the winner will be the
heuristic which results in the least waste between the pieces
in the solutions, not counting the free space at the top of the
sheet. Therefore, there is selection pressure on the individuals
to produce solutions where the pieces fit next to each other
neatly without any gaps. The individuals are manipulated
using the parameters shown in table II. The mutation operator
is point mutation, using the ‘grow’ method explained in [18],
with a minimum and maximum depth of 5, and the crossover
operator produces two new individuals with a maximum
depth of 17.

We wish to evolve general heuristics, applicable to more
than the instance(s) they are evolved on. To achieve this aim,
we use a training set to evolve the heuristics, and then report
the results on a separate test set. The instances currently in
the literature are varied and numerous enough to compare
solution methods, but they are not adequate for the automatic
training or evolution of solution methods (heuristics). To
train a heuristic, one needs a large set of training instances
which are similar to each other is some way. We have created
such a set using the generation method for the existing
benchmark instances referred to as N1-N12 (introduced in
[49]). Our aim is to investigate if the evolved heuristics are
capable of maintaining their performance on new instances
of the same class as those they were evolved on, and on
different classes. We only evolve heuristics on the instances
from the N1-N8 classes, because of the run times involved
in repeatedly packing larger instances during the evolution
process. It is also interesting to investigate if the evolved
heuristics maintain their performance on instances larger than
those they were trained on.

The training instances from the classes N1-N8 were each
created with a known optimum solution, because they are
generated by iteratively making guillotine cuts across rect-
angles, starting with a rectangle of the dimensions given in
table III. After the first cut is made, there are two rectangles,
and the next cut is made across one of those. Then the next
cut is made across one of the three, and so on. We generate
10 training instances for each class in this way, so each of the
ten instances in a class is generated from the same starting

TABLE III
THE DETAILS OF THE 8 TRAINING INSTANCE CLASSES

Class Number of Sheet Optimum Training
Name Pieces Width Height Instances
N1 10 40 40 10
N2 20 30 50 10
N3 30 30 50 10
N4 40 80 80 10
N5 50 100 100 10
N6 60 50 100 10
N7 70 80 100 10
N8 80 100 80 10

TABLE IV
THE BENCHMARK INSTANCESUSED IN THIS PAPER

Instance set Number of Number of Sheet Optimal
name Instances Rectangles Width Height
Hopper and
Turton (2001) 21 16-197 20-160 20-240
Valenzuela and
Wang (2001) 12 25-1000 100 100
Burke, Kendall and
Whitwell (2006) 12 10-500 40-100 40-300
Ramesh Babu and
Ramesh Babu (1999) 1 50 1000 375

rectangle. The N1-N12 benchmark instances are widely used
in the literature, and so we compare the performance of our
evolved heuristics with that of other approaches, on these
instances. We perform ten runs for each problem instance
class, resulting in 80 heuristics.

V. BENCHMARK PROBLEMS

In this paper, we use 46 benchmark instances from the
literature to test our evolved heuristics. The instances used
are summarised in table IV. All of the instances were
created from known optimal packings. The Hopper and
Turton dataset contains 7 classes of 3 problems each, and
each class was constructed from a different sized initial
rectangle and contains a different number of pieces. All
pieces have a maximum aspect ratio of 7. Valenzuela and
Wang created two classes of problem, referred to as ‘nice’
and ‘path’. The nice dataset contains pieces of similar size,
and the path dataset contains pieces that have very different
dimensions. The dataset from Burke, Kendall and Whitwell
contains 12 instances with increasing numbers of rectangles
in each. We also use an instance created by Ramesh Babu
and Ramesh Babu, containing 50 rectangles all of similar
size. The dimensions of the pieces in this instance are given
in [53].

The Valenzuela and Wang dataset uses floating points to
represent the dimensions of the rectangles. Our implemen-
tation uses integers, so to obtain a dataset we can use, we
multiplied the data by1 × 106, the results are then divided
by 1 × 106 so they can be compared to the other results in
the literature. This procedure never reduces the accuracy of
the values, and so it is fair to compare the results with others
in the literature.



11

VI. RESULTS AND DISCUSSION

In this section, we compare our evolved constructive
heuristics mainly to the best-fit heuristic, as it is the best
human created constructive heuristic in the literature. There
exists two papers [49], [50] which report different results
from the best-fit heuristic, possibly due to differing nuances
of implementation. In our results tables here, we refer to the
two implementations as ‘version 1’ and ‘version 2’.

The results section is divided into four subsections. Sec-
tion VI-A reports the results of evolved heuristics on new
instances of the same class as those they were evolved on.
Section VI-B reports the results of those same heuristics on
different classes of problem instance. Section VI-C shows
the results of heuristics evolved on more than one problem
class, which results in much more general heuristics. The
best evolved heuristic is then analysed in greater detail in
section VI-D.

A. Performance on New Instances of the Same Class

In this section, we report the results of the heuristics when
tested on instances from the same class as those they were
evolved on. Table V summarises the results. Each row of the
table represents the results of ten heuristics, each evolved on
ten instances from the class in the first column. The values
are the results on the benchmark instance of that class from
the literature. The second and third columns represent the
results of the two implementations of best-fit, from [49] and
[50]. The fourth shows the result of the best heuristic from
the ten which were evolved, and the fifth column shows their
average result. Note that the ‘best’ heuristic is the heuristic
which obtained the best result on thetraining set, not the test
set, so it is valid to say that table V shows how the heuristics
generalise to new instances of the same type.

The average results in the table show that the evolved
heuristics have roughly the same performance, and are some-
times better than best fit on these benchmark problems.
Indeed, the average results for the heuristics evolved on
classes N7 and N8 are better than both implementations of
best-fit, which means that the GP can successfully evolve
heuristics which can beat a human created heuristic on new
instances. This shows that heuristics can be evolved with this
system to be specialised on a particular class of problem. The
next section shows the results of the heuristics when tested
on problems of a different class.

B. Performance on New Instances of Different Classes

Table VI shows the results of applying the evolved heuris-
tics to instances of a different class to those they were
evolved on. Each row of the table represents the ten heuristics
that were evolved on the training set from the class in the first
column. The values in a row represent the average results of
the ten heuristics on the benchmark test instances named in
the top row. One can see from this table that the heuristics
are consistent and robust on new instances of the same class
as those they were evolved on. The values highlighted in

TABLE V
RESULTS OF THE EVOLVED HEURISTICS WHEN TESTED ON THE

BENCHMARK INSTANCE OF THE SAME CLASS AS THOSE WHICH IT WAS

EVOLVED ON. THE INSTANCE IS UNSEEN BY THE HEURISTIC DURING ITS

EVOLUTION, AND THUS THESE RESULTS REPRESENT THE ABILITY OF

THE HEURISTICS TO GENERALISE TO NEW INSTANCES

Instance Best-Fit Best-Fit Best Evolved Average
Version 1 Version 2 Heuristic Performance

N1 45 45 44 45.5
N2 53 53 54 54.3
N3 52 52 52 52.7
N4 83 86 83 84.5
N5 105 105 106 105.2
N6 103 102 105 103
N7 107 108 102 104
N8 84 83 83 82.8

bold represent the results on the benchmark instance from
the same class as the heuristics’ training set.

The results shown so far indicate that evolving on instances
of only one class does not produce general heuristics. The
heuristics appear to be specialised to one class of instance, at
the expense of their reliability on other classes of instance.

C. Improving Generality by Evolving Heuristics on Three
Classes

To investigate if we could increase the level of generality
of the evolved heuristics, new heuristics were evolved on
instances from three different classes. We evolved heuristics
on three sets of classes. Five instances were included in the
training set from each class, making 15 instances in total. The
first set of ten heuristics was evolved on instances of classes
N3, N4, and N5. The second set was evolved on classes N4,
N5, and N6, and the third set was evolved on instances from
N5, N6, and N7. The evolved heuristics were then tested
on the N1-N10 benchmark instances from the literature, and
compared against the human created best-fit heuristic.

Table VII shows a summary of the results obtained by
the heuristics. The first column shows the test instances,
and the second and third columns show the results of the
two implementations of best-fit. The remaining six columns
represent the results of the best heuristics and the average
results of the ten heuristics. The ‘best’ heuristic of the ten
is defined as the heuristic which achieves the best results on
the training set, not on the test set, so the results display the
ability of the GP methodology to produce heuristics which
can generalise to new instances.

The table shows that the evolved heuristics can now
obtain results competitive with, and often better than, best-
fit across all of the N1-N10 benchmark instances. It is
important to emphasise that these heuristics are being reused
on new instances of classes different to those they were
evolved on, and, in contrast to table VI they maintain their
performance on these different instances. They have evolved
to be more general because they have seen more than one
type of instance during their evolution. It is interesting to
note that this level of generality can be evolved by exposing
the heuristics to just three different classes. Furthermore,



12

TABLE VI
RESULTS OF THE EVOLVED HEURISTICS WHEN TESTED ON THE BENCHMARK INSTANCES OF ALL CLASSES. THE BOLD VALUES INDUCATE THE

RESULTS WHERE THE HEURISTICS ARE TESTED ON INSTANCES OF THE SAME CLASS, AND SO THEY MATCH THE VALUES IN TABLE V

Training Test Instance
Class N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Class N1 45.5 55 54.3 91.5 107.5 108.1 117.5 87.8 157.5 158.8
Class N2 49.3 54.3 53.1 95.2 118.9 105.4 116 93.1 161.5 158.4
Class N3 44.1 54.5 52.7 84.5 109.8 104.5 106.4 83.3 157.2 155.4
Class N4 46.2 54.7 56 84.5 105.3 106.2 122 83.6 168.8 157.5
Class N5 49.1 54.6 60.3 87.7 105.2 103.2 119.9 82.9 168.8 156.5
Class N6 42.8 54.8 53.2 83.9 106.8 103 106.2 84.2 156.6 157
Class N7 41.9 54.6 53.3 83.5 106.7 104 104 83 157.7 153.7
Class N8 45.8 56.7 61 84.8 105.2 108.1 118 82.8 178.2 160.1

recall that the evolved heuristics do not perform any post-
processing on the solution after it is completed. For example,
any pieces which are extending vertically out of the top of
the solution are not taken out and replaced horizontally, as
is the case with the best-fit heuristic [49]. If post-processing
was perfomed, then in some cases the solutions would be one
or two units better. Specific examples of this can be seen in
section VI-D.

D. Analysing the Best Evolved Heuristic

This section provides some additional results from the
best evolved heuristic for the N4+N5+N6 classes. This is
the heuristic which performed best on the N1-N10 instances
out of the three best evolved heuristics in table VII. In
this section, we test the heuristic on further benchmark
datasets from the literature, and compare it against the best-
fit heuristic, direct metaheuristic approaches, and a reactive
GRASP approach. We then analyse three results from this
heuristic in detail using graphical representations of the
solutions.

Figure 13 shows the evolved heuristic, expressed in prefix
notation, with the obvious simplifications made from its raw
form. Note that it contains two large repeated sections of
code. It also contains many repeated subtrees. For example
(+ (* -4.839 SH) (* X SHH)) is repeated twice, where X
is 4 and 6. This expression increases when the slot height
is lower, and so could contribute to prioritising lower slots.
Another example that has this property is (+ (% SHW 0.963)
(% 0.963 SH)), which occurs twice.

Table VIII shows the results that the best evolved heuristic
obtains. We compare its results to two metaheuristic methods
described in section III-C3, a genetic algorithm with bottom-
left-fill decoder, and a simulated annealing approach with
bottom-left-fill decoder. Table VIII shows only the best
result of the two on each instance. These two metaheuristic
approaches are also described in [5], and the results evaluated
using a density measure rather than the length of sheet
measure used in this paper. To obtain the results that we com-
pare with here, the metaheuristic methods were implemented
again in [49]. The results of the best-fit algorithm from [49],
which has achieved superior results to BL and BLF, is used
as a constructive heuristic benchmark, and we also compare
with the reactive GRASP presented in [58]. The GRASP
method does not allow piece rotations, while they are allowed

(- (- (+ (+ (- (* (+ SH SHH) (+ (+ (- (* (+ SH SHH) (+ (*
(+ SHH (+ SHH H)) (- (+ H W) (* 2 SH))) (+ SHH (+ SHH
H)))) H) (% (+ (* -4.839 SH) (* 4 SHH)) (* SWL (+ SHH
H)))) (+ (+ (* (% SWL SHH) (+ (% SHW 0.963) (% 0.963
SH)))(- (+ H W) (* 3 SH))) (+ SHH H)))) H) (% (+ (- (- H
SH) SH) (+ SHH SHH)) (+ (* (+ SHH (+ SHH H)) (- (+ H
W) (* 2 SH))) (- W (- 1 SH))))) (+ (+ (* (% SWL SHH) (-
H SH)) SH) (* (- (+ (+ (- (* (+ SH SHH) (+ (* (+ SHH (+
SHH H)) (- (+ H W) (* 2 SH))) (+ SHH (+ SHH H)))) H)
(% (+ (* -4.839 SH) (* 6 SHH)) (* SWL (+ SHH H)))) (+
(+ (* (% SWL SHH) (+ (% SHW 0.963) (% 0.963 SH))) (+
(- (- H SH) SH) (% SHW 0.963))) (+ SHH H))) (% SWL
SHH)) SHH))) (- H SH)) SHH)

Fig. 13. The best evolved heuristic, with some obvious simplifications
made

for the heuristics evolved here. The GRASP results would
probably not be worse if rotations were allowed, so while
we are aware of the difference, we believe the comparison
with GRASP is still valuable, as it is a comparison with a
complex human designed heuristic with many parameters.

The table shows that the automatically designed heuristic
has a performance roughly the same as the best-fit heuristic.
It is noticably better than the metaheuristic methods, and
noticably worse than the reactive GRASP approach. This is
an appropriate place for the evolved heuristic, as the reactive
GRASP method is the state of the art in two dimensional strip
packing, and is a complex algorithm with many parameters,
which are chosen by hand to enable the algorithm to obtain
the best results in the literature. We would not expect simple
constructive heuristics to perform better than such a method,
whether they are designed by hand or by GP.

The ‘time’ column displays the time that the heuristic takes
to produce a solution. The run times are worth noting for the
two largest instances from each of the nice and path sets.
This is due to the methodology of iterating through all of
the possible piece and slot combinations at every decision
point. These instances have two characteristics that result in
very large run times. The first is that the sheet width is large
compared to the average width of the pieces. This means
that many more slots are created, as more pieces fit into the
sheet width, and each potentially creates a new slot. This is
combined with the fact that the heuristic prefers to place long



13

TABLE VII
RESULTS OF THE HEURISTICS EVOLVED ON3 CLASSES, WHEN TESTED ON BENCHMARK INSTANCES OF ALL CLASSES, THIS TABLE SHOWS THE

GENERALITY OF THE EVOLVED HEURISTICS

Best-Fit Best Evolved Heuristic Average of 10 Heuristics
Version 1 Version 2 N3+N4+N5 N4+N5+N6 N5+N6+N7 N3+N4+N5 N4+N5+N6 N5+N6+N7

N1 45 45 45 40 43 43.3 42.1 44.1
N2 53 53 54 56 56 54.5 55 56.2
N3 52 52 53 52 52 52.7 52.9 52.3
N4 83 86 82 84 82 83.2 83.3 83.6
N5 105 105 106 105 109 106.2 107.4 107.8
N6 103 102 103 102 104 103 103.1 103.5
N7 107 108 104 103 104 105.6 105.1 104.6
N8 84 83 84 83 83 82.8 82.9 82.9
N9 152 152 157 153 156 156.8 155.2 156.2
N10 152 152 153 153 153 155.8 153.2 154.5

Fig. 14. The scores returned by the heuristic for different piece sizes in
the first slot of N11. For the ‘width’ plot, the width is increased to 70 as
the height is fixed to 20. The converse is true for the ‘height’ plot

thin pieces vertically, which creates more slots as all of the
pieces stack up next to each other, and when their heights
do not quite match up, each one will produce a separate slot.
In this situation, the heuristic is evaluated a vast number of
times more than is necessary. If the exact strategy of the
evolved heuristic can be extracted and reimplemented, then
the process of packing can be made much more efficient, and
this forms part of our future work (see section VIII for more
discussion of this issue).

1) Example Packings:Three example packings, obtained
by the best evolved heuristic, are shown in figures 15-17.
They show the scalability of the heuristic, as it was trained on
instances with 40-60 pieces, and the instances shown contain
197-300 pieces.

The heuristic has a tendency to pack pieces vertically
rather than horizontally, especially at the beginning of the
packing, and this behaviour can be seen in figures 16 and
17. Indeed, it is this behaviour which results in the very poor
solution to instance c2p2 (see table VIII), which is very wide
compared to its optimal height, and which contains one very
long piece which must be laid horizontally. In contrast, figure
15 shows the first three pieces packed horizontally, and the
reason for this can be seen in the graph in figure 14.

In figure 14, the two lines represent the scores returned
by the heuristic for the first slot in N11, for different sized
pieces. The first line represents the score returned by the

heuristic when the piece height increases to 70 (the width is
fixed to 20). The second line represents the score returned
by the heuristic when the width increases to 70 (the height
is fixed to 20). These two lines represent possibilities for
placing pieces into the first slot, and the scores that the
heuristic gives to those possibilities. The two lines represent
the fact that pieces can take two orientations, and we only
extend the dimensions up to 70 because the width of the
sheet is 70.

One can see from the width line that the score increases
in a linear fashion until the width hits 70, in which case the
score increases dramatically, taking it above the score when
the height is 70. A possible reason for this is that when the
piece fits a slot exactly, the ‘SWL’ terminal takes a value of
zero, and this may render sections of the heuristic redundant,
especially if they involve a multiplication with SWL.

This means that the heuristic scores the piece higher in
its horizontal orientation than its vertical orientation. In the
absence of any other pieces in this instance with a dimension
greater than 70, this piece receives the highest score in its
horizontal orientation. If there existed pieces with a height
greater than 70, these would receive an even higher score,
because the line in figure 14 representing height would
extend to its next point at a height of 75. Thus, the reason
for the heuristic placing pieces vertically at the beginning of
the packing is that there rarely exists a piece which fits the
width of the sheet exactly, as is the case in instance N11.

VII. C ONCLUSIONS

Traditionally, heuristics have been human designed, which
is a highly appropriate approach for many situations, espe-
cially where the importance of obtaining a solution close
to the optimum is paramount. However, there are situations
where the cost of employing a human heuristic designer may
be too high, and where a solution very close to the optimum
is not required. It is in these situations that the solutions
are often obtained by hand, because the cost of a computer
aided decision support system is too high. In these situations
it is less important that the solution quality is as close to
optimal as possible, and more important that the solutions are
simply better than that currently obtained without computer
support. Organisations with such a goal would benefit from



14

TABLE VIII
RESULTS OF OUR BEST EVOLVED HEURISTICS ON BENCHMARK DATA SETS, COMPARED TO RECENT METAHEURISTIC AND CONSTRUCTIVE HEURISTIC

APPROACHES, AND THE STATE OF THE ART REACTIVE GRASP APPROACH

Name Number Optimal Meta- BF Reactive Best Evolved
of Pieces Height heuristic Heuristic GRASP Result Time (s)

N1 10 40 40 45 40 40 < 0.01
N2 20 50 51 53 51 56 0.01
N3 30 50 52 52 51 52 0.04
N4 40 80 83 83 81 84 0.12
N5 50 100 106 105 102 105 0.25
N6 60 100 103 103 101 102 0.15
N7 70 100 106 107 101 103 0.39
N8 80 80 85 84 81 83 0.61
N9 100 150 155 152 151 153 0.391
N10 200 150 154 152 151 153 1.09
N11 300 150 155 152 151 152 2.28
N12 500 300 312 306 303 307 4.65
c1p1 16 20 20 21 20 22 0.02
c1p2 17 20 21 22 20 22 0.02
c1p3 16 20 20 24 20 24 0.02
c2p1 25 15 16 16 15 18 0.05
c2p2 25 15 16 16 15 26 0.06
c2p3 25 15 16 16 15 17 0.05
c3p1 28 30 32 32 30 32 0.06
c3p2 29 30 32 34 31 34 0.12
c3p3 28 30 32 33 30 36 0.09
c4p1 49 60 64 63 61 63 0.30
c4p2 49 60 63 62 61 62 0.31
c4p3 49 60 62 62 61 63 0.25
c5p1 73 90 94 93 91 92 0.47
c5p2 73 90 95 92 91 93 0.59
c5p3 73 90 95 93 91 93 0.53
c6p1 97 120 127 123 121 123 1.19
c6p2 97 120 126 122 121 122 1.23
c6p3 97 120 126 124 121 123 1.12
c7p1 196 240 255 247 244 244 6.34
c7p2 197 240 251 244 242 244 7.72
c7p3 196 240 254 245 243 245 7.64

NiceP1 25 100 108.2 107.4 103.7 108.9 0.06
NiceP2 50 100 112 108.5 104.6 110.1 0.33
NiceP3 100 100 113 107 104 108.1 1.97
NiceP4 200 100 113.2 105.3 103.6 107.5 10.59
NiceP5 500 100 111.9 103.5 102.2 104.4 110.5
NiceP6 1000 100 - 103.7 102.2 104.1 654.1
PathP1 25 100 106.7 110.1 104.2 111.0 0.08
PathP2 50 100 107 113.8 101.8 106.5 0.45
PathP3 100 100 109 107.3 102.6 104.3 3.34
PathP4 200 100 108.8 104.1 102 104.1 19.44
PathP5 500 100 111.11 103.7 103.1 103.5 194.70
PathP6 1000 100 - 102.8 102.5 104.9 1207.85
RBP1 50 375 400 400 375 400 0.06

this type of methodology, where the cost of a heuristic for
their problem would be made cheaper through automation of
the heuristic design process.

This paper has shown that an evolutionary hyper-heuristic
approach can automatically generate very good quality
reusable heuristics for the 2D strip packing problem. The
approach represents a change in the way that evolutionary
approaches are employed for this problem, and represents the
first attempt at automated heuristic design for this problem.
The contribution of this paper is not to show that this method-
ology obtains better heuristics than humans can create, or
that it can obtain results more quickly, although the results
of the evolved heuristics are highly competitive with the
best human created constructive heuristic in the literature.
The contribution is to show that the design process can be

automated for this problem with evolutionary computation,
and show the quality of the heuristics that can be designed
by evolution.

VIII. F UTURE WORK

In practical real world situations where variants of the
two dimensional strip packing problem occur, the problem
instances will not be constructed from a known optimum
in which the pieces fit neatly together. The instances will
often contain a few types of pieces, with lots of copies of
each piece. This is because one organisation will produce
the same product many times, which will require many
copies of identical pieces of material. We hypothesise that
this methodology will excel in such a situation. We have
already shown that the heuristics can be specialised to a



15

Fig. 15. Packing obtained by the best evolved heuristic on instance
N11, to a height of 152. In contrast to its usual packing strategy, the
first three pieces are laid horizontally, perhaps because they fit exactly
into the width of the slot

Fig. 16. Packing obtained by the best evolved heuristic on instance
c7p2, to a height of 244. Note that if we applied a post-processing
stage such as the one used by best-fit, the small piece at the top
would be laid flat and the solution would be one unit better

Fig. 17. Packing obtained by the best evolved heuristic on instance
PathP4, to a height of 104.1. similar to figure 16, post-processing
would improve this solution further, by laying the tallest piece on
its side

class of problems where the pieces are not identical, and
so we believe this phenomenon will be more pronounced if
the instances are even more specialised. We intend to test this
by creating instances with few piece types, but many copies
of each, and testing the quality of the solutions produced.

Another potential research direction would be to determine
whether the existing functions and terminals represent the
best set for evolving generalisable heuristics, or if they need
to be modified to incorporate more general information. For
example, the ‘piece width’ terminal currently encodes the
absolute value of the width of the piece, but it may be
necessary to redefine this terminal. The redefined terminal

may encode the piece width as a fraction of the sheet width,
or as a fraction of the maximum piece width in the instance.
Then the heuristic may be more applicable to new problem
instances, and be easier to interpret and understand. To
express the issue a different way, if one was to take a problem
instance, and create a new instance by reducing the size of all
the dimensions by half, then one would expect that applying
a heuristic to both instances would produce two solutions
which look identical. Currently, because the terminals encode
absolute values, it is not clear whether an evolved heuristic
would produce identical results for instances which are scaled
up or down.



16

This GP methodology is costly to produce an immediate
solution, and while the aim is not to evolve solutions to
individual instances, we would still wish to keep the process
as efficient as possible. The reason for the lengthly run times
is a combination of code bloat and the many times that
the GP tree must be evaluated for each packing. We use
the tarpeian wrapper method to reduce bloat, but this is a
general solution which may not be the most effective for
this problem. We aim to investigate if there are methods
more specific to two dimensional packing which can reduce
the redundant code, without compromising the variety of the
heuristics in the population.

Once they are evolved, the heuristics are not optimised,
and therefore look slower than existing heuristics such as
best-fit. We would like to investigate the possibility to extract
a method from the evolved tree and then optimise the
implementation of it. For example, if it can be shown that
the evolved tree always scores lower slots much higher,
appropriate data structures can be used to ensure that the
lowest slot is obtained in the most efficient way. To give
another example, if the pieces with a greater height are
always scored more highly then the evolved strategy can
be reimplemented as a hand programmed heuristic which
preorders the pieces. These reimplementations would remove
unnecessary calculations that are sure to make no difference
to the result. However, this can only be done once the
heuristic strategy has been evolved. The very general process
of iterating through every piece and slot looks inefficient
when the strategy of an evolved heuristic is examined, but
keeping the process very general is necessary, to ensure that
it is possible to evolve a variety of strategies.

ACKNOWLEDGMENT

This work was supported by ESPRC grant reference
EP/C523385/1.

REFERENCES

[1] P. Ross, “Hyper-heuristics,” inSearch Methodologies: Introductory
Tutorials in Optimization and Decision Support Techniques, E. K.
Burke and G. Kendall, Eds. Boston: Kluwer, 2005, pp. 529–556.

[2] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the theory of NP-Completeness. San Fransisco: W.H. Freeman and
Company, 1979.

[3] E. K. Burke, R. S. R. Hellier, G. Kendall, and W. G., “A new bottom-
left-fill heuristic algorithm for the two-dimensional irregular packing
problem,” Operations Research, vol. 54, no. 3, pp. 587–601, 2006.

[4] G. Wäscher, H. Haußner, and H. Schumann, “An improved typology
of cutting and packing problems,”European Journal of Operational
Research, vol. 183, no. 3, pp. 1109–1130, 2007.

[5] E. Hopper and B. C. H. Turton, “An empirical investigation of meta-
heuristic and heuristic algorithms for a 2d packing problem,”European
Journal of Operational Research, vol. 128, no. 1, pp. 34–57, 2001.

[6] S. Jakobs, “On genetic algorithms for the packing of polygons,”
European Journal of Operational Research, vol. 88, no. 1, pp. 165–
181, 1996.

[7] D. Whitley and J. P. Watson, “Complexity theory and the no free
lunch theorem,” inSearch Methodologies: Introductory Tutorials in
Optimization and Decision Support Techniques, E. K. Burke and
G. Kendall, Eds. Boston: Kluwer, 2005.

[8] D. H. Wolpert and W. G. Macready, “No free lunch theorems for op-
timization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1997.

[9] D. Whitley and J. P. Watson, “Complexity and no free lunch,” inSearch
Methodologies: Introductory Tutorials in Optimization and Decision
Support Techniques, E. K. Burke and G. Kendall, Eds. Boston:
Kluwer, 2005, pp. 317–339.

[10] A. Schaerf, “A survey of automated timetabling,”Artificial Intelligence
Review, vol. 13, no. 2, pp. 87–127, 1999.

[11] E. K. Burke, B. MacCarthy, S. Petrovic, and R. Qu, “Multiple-retrieval
case based reasoning for course timetabling problems,”Journal of the
Operational Research Society, vol. 57, no. 2, pp. 148–162, 2006.

[12] E. K. Burke, Y. Bykov, J. Newall, and S. Petrovic, “A time-predefined
approach to course timetabling,”Yugoslav Journal of Operational
Research, vol. 13, no. 2, pp. 139–151, 2003.

[13] E. K. Burke, Y. Bykov, J. P. Newall, and S. Petrovic, “A time-
predefined local search approach to exam timetabling problems,”IIE
Transactions on Operations Engineering, vol. 36, no. 6, pp. 509–528,
2004.

[14] H. Asmuni, E. K. Burke, J. M. Garibaldi, and B. McCollum, “A novel
fuzzy approach to evaluate the quality of examination timetabling,” in
Proceedings of the 6th International Conference on the Practice and
Theory of Automated Timetabling (PATAT’06), Brno, Czech Republic,
August 2006, pp. 82–102.

[15] K. Schimmelpfeng and S. Helber, “Application of a real-world
university-course timetabling model solved by integer programming,”
OR Spectrum, vol. 29, no. 4, pp. 783–803, 2007.

[16] A. S. Fukunaga, “Automated discovery of composite sat variable-
selection heuristics,” inEighteenth national conference on Artificial
intelligence. Menlo Park, CA, USA: American Association for
Artificial Intelligence, 2002, pp. 641–648.

[17] E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulen-
burg, “Hyper-heuristics: An emerging direction in modern search tech-
nology,” in Handbook of Meta-Heuristics, F. Glover and G. Kochen-
berger, Eds. Boston, Massachusetts: Kluwer, 2003, pp. 457–474.

[18] J. R. Koza,Genetic programming: on the programming of computers
by means of natural selection. Boston, Massachusetts: The MIT Press,
1992.

[19] J. R. Koza and R. Poli, “Genetic programming,” inSearch Method-
ologies: Introductory Tutorials in Optimization and Decision Support
Techniques, E. K. Burke and G. Kendall, Eds. Boston: Kluwer, 2005,
pp. 127–164.

[20] W. Banzhaf, P. Nordin, R. Keller, and F. Francone,Genetic pro-
gramming, an introduction: on the automatic evolution of computer
programs and its applications. San Francisco: Morgan Kaufmann,
1998.

[21] P. Ross, J. G. Marin-Blazquez, S. Schulenburg, and E. Hart, “Learning
a procedure that can solve hard bin-packing problems: A new ga-
based approach to hyperheurstics,” inProceedings of the Genetic and
Evolutionary Computation Conference 2003 (GECCO ’03), Chicago,
Illinois, 2003, pp. 1295–1306.

[22] P. Ross, S. Schulenburg, J. G. Marin-Blazquez, and E. Hart, “Hyper
heuristics: learning to combine simple heuristics in bin packing prob-
lems,” in Proceedings of the Genetic and Evolutionary Computation
Conference 2002 (GECCO ’02), New York, NY., 2002.

[23] L. Han and G. Kendall, “Investigation of a tabu assisted hyper-heuristic
genetic algorithm,” inProceedings of Congress on Evolutionary Com-
putation (CEC’03), vol. 3, Canberra, Australia, December 2003, pp.
2230–2237.

[24] E. K. Burke, S. Petrovic, and R. Qu, “Case-based heuristic selection
for timetabling problems,”J. of Scheduling, vol. 9, no. 2, pp. 115–132,
2006.

[25] K. Dowsland, E. Soubeiga, and E. K. Burke, “A simulated annealing
hyper-heuristic for determining shipper sizes,”European Journal of
Operational Research, vol. 179, no. 3, pp. 759–774, 2007.

[26] E. K. Burke, G. Kendall, and E. Soubeiga, “A tabu-search hyper-
heuristic for timetabling and rostering,”Journal of Heuristics, vol. 9,
no. 6, pp. 451–470, 2003.

[27] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu,
“A graph-based hyper heuristic for timetabling problems,”European
Journal of Operational Research, vol. 176, pp. 177–192, 2007.

[28] E. Özcan, B. Bilgin, and E. E. Korkmaz, “Hill climbers and mutational
heuristics in hyperheuristics,” inLNCS 4193, Proceedings of the 9th
International Conference on Parallel Problem Solving from Nature
(PPSN 2006), T. Runarsson, H.-G. Beyer, E. Burke, J. J.Merelo-
Guervos, D. Whitley, and X. Yao, Eds., Reykjavik, Iceland, September
2006, pp. 202–211.



17

[29] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach
to scheduling a sales summit,” inProceedings of the 3rd International
Conference on the Practice and Theory of Automated Timetabling
(PATAT 2000), E. K. Burke and W. Erben, Eds., Konstanz, Germany,
August 2000, pp. 176–190.

[30] P. Rattadilok, A. Gaw, and R. Kwan, “Distributed choice function
hyper-heuristics for timetabling and scheduling,” inPractice and The-
ory of Automated Timetabling V, Springer Lecture notes in Computer
Science, E. Burke and M.Trick, Eds., vol. 3616, 2005, pp. 51–67.

[31] A. S. Fukunaga, “Evolving local search heuristics for SAT using ge-
netic programming,” inLNCS 3103. Proceedings of the ACM Genetic
and Evolutionary Computation Conference (GECCO ’04), K. Deb,
R. Poli, W. Banzhaf, H.-G. Beyer, E. Burke, P. Darwen, D. Dasgupta,
D. Floreano, J. Foster, M. Harman, O. Holland, P. L. Lanzi, L. Spector,
A. Tettamanzi, D. Thierens, and A. Tyrrell, Eds. Seattle, WA, USA:
Springer-Verlag, 2004, pp. 483–494.

[32] A. Fukunaga, “Automated discovery of local search heuristics for
satisfiability testing,”Evolutionary Computation (MIT Press), vol. 16,
no. 1, pp. 31–1, 2008.

[33] M. B. Bader-El-Din and R. Poli, “Generating sat local-search heuristics
using a gp hyper-heuristic framework,” inLNCS 4926. Proceedings of
the 8th International Conference on Artifcial Evolution, October 2007,
pp. 37–49.

[34] E. K. Burke, M. R. Hyde, and G. Kendall, “Evolving bin packing
heuristics with genetic programming,” inProceedings of the 9th
International Conference on Parallel Problem Solving from Nature
(PPSN 2006), T. Runarsson, H.-G. Beyer, E. Burke, J. J.Merelo-
Guervos, D. Whitley, and X. Yao, Eds., Reykjavik, Iceland, September
2006, pp. 860–869.

[35] E. K. Burke, M. R. Hyde, G. Kendall, and J. Woodward, “Automatic
heuristic generation with genetic programming: Evolving a jack-of-
all-trades or a master of one,” inProceedings of the 9th ACM Genetic
and Evolutionary Computation Conference (GECCO 2007), London,
UK., July 2007, pp. 1559–1565.

[36] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward, “The scalability
of evolved on line bin packing heuristics,” inProceedings of the
IEEE Congress on Evolutionary Computation (CEC 2007), Singapore,
September 2007, pp. 2530–2537.

[37] R. E. Keller and R. Poli, “Linear genetic programming of parsimonious
metaheuristics,” inProceedings of the IEEE Congress on Evolutionary
Computation (CEC 2007), Singapore, September 2007, pp. 4508–
4515.

[38] C. D. Geiger, R. Uzsoy, and H. Aytug, “Rapid modeling and discovery
of priority dispatching rules: An autonomous learning approach,”
Journal of Scheduling, vol. 9, no. 1, pp. 7–34, 2006.

[39] P. Gilmore and R. Gomory, “A linear programming approach to the
cutting-stock problem,”Operations Research, vol. 9, no. 6, pp. 849–
859, 1961.

[40] N. Christofides and C. Whitlock, “An algorithm for two-dimensional
cutting problems,”Operations Research, vol. 25, no. 1, pp. 30–44,
1977.

[41] J. E. Beasley, “An exact two-dimensional non-guillotine cutting tree
search procedure,”Operations Research, vol. 33, no. 1, pp. 49–64,
1985.

[42] M. Hifi and V. Zissimopoulos, “A recursive exact algorithm for
weighted two-dimensional cutting,”European Journal of Operational
Research, vol. 91, no. 3, pp. 553–564, 1996.

[43] V. D. Cung, M. Hifi, and B. Le Cun, “Constrained two-dimensional
cutting stock problemsa best-first branch-and-bound algorithm,”In-
ternational Transactions in Operational Research, vol. 7, no. 3, pp.
185–210, 2000.

[44] B. S. Baker, E. G. Coffman-Jr., and R. L. Rivest, “Orthogonal packings
in two dimensions.”SIAM J. Comput., vol. 9, no. 4, pp. 846–855, 1980.

[45] B. Chazelle, “The bottom-left bin packing heuristic: An efficient
implementation,”IEEE Transactions on Computers, vol. 32, no. 8,
pp. 697–707, 1983.

[46] D. J. Brown, B. S. Baker, and H. P. Katseff, “Lower bounds for on-
line two-dimensional packing algorithms,”Acta Informatica, vol. 18,
no. 2, p. 1982, 1982.

[47] D. Zhang, Y. Kang, and A. Deng, “A new heuristic recursive algorithm
for the strip rectangular packing problem,”Computers and Operations
Research, vol. 33, no. 8, pp. 2209–2217, 2006.

[48] F. Rinaldi and A. Franz, “A two-dimensional strip cutting problem with
sequencing constraint,”European Journal of Operational Research,
vol. In Press, Corrected Proof, Available online 7 July 2006, 2006.

[49] E. Burke, G. Kendall, and G. Whitwell, “A new placement heuristic for
the orthogonal stock-cutting problem,”Operations Research, vol. 55,
no. 4, pp. 655–671, 2004.

[50] E. K. Burke, G. Kendall, and G. Whitwell, “A simulated annealing
enhancement of the best-fit heuristic for the orthogonal stock cutting
problem,” INFORMS Journal On Computing (accepted), to appear
2009.

[51] D. Liu and H. Teng, “An improved bl-algorithm for genetic algorithms
of the orthogonal packing of rectangles,”European Journal of Oper-
ational Research, vol. 112, no. 2, pp. 413–419, 1999.

[52] G. Belov, G. Scheithauer, and E. A. Mukhacheva, “One-dimensional
heuristics adapted for two-dimensional rectangular strip packing,”
Journal of the Operational Research Society, vol. 59, no. 6, pp. 823–
832, 2008.

[53] A. Ramesh Babu and N. Ramesh Babu, “Effective nesting of rectan-
gular parts in multiple rectangular sheets using genetic and heuristic
algorithms,” International Journal of Production Research, vol. 37,
no. 7, pp. 1625–1643, 1999.

[54] C. L. Valenzuela and P. Y. Wang, “Heuristics for large strip packing
problems with guillotine patterns: An empirical study,” inProceed-
ings of the Metaheuristics International Conference 2001 (MIC’01),
University of Porto, Porto, Portugal, 2001, pp. 417–421.

[55] K. K. Lai and J. W. M. Chan, “Developing a simulated annealing
algorithm for the cutting stock problem,”Computers and Industrial
Engineering, vol. 32, no. 1, pp. 115–127, 1997.

[56] L. Faina, “An application of simulated annealing to the cutting stock
problem,”European Journal of Operational Research, vol. 114, no. 3,
pp. 542–556, 1999.

[57] A. Bortfeldt, “A genetic algorithm for the two-dimensional strip
packing problem with rectangular pieces,”European Journal of Oper-
ational Research, vol. 172, no. 3, pp. 814–837, 2006.

[58] R. Alvarez-Valdes, F. Parreno, and J. M. Tamarit, “Reactive grasp
for the strip-packing problem,”Computers and Operations Research,
vol. 35, no. 4, pp. 1065–1083, 2008.


